scholarly journals An Inertial Model of the Interaction of Ekman Layers and Planetary Islands

2013 ◽  
Vol 43 (7) ◽  
pp. 1398-1406
Author(s):  
Joseph Pedlosky

Abstract An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.

Author(s):  
Jiehai Zhang ◽  
Arun Muley ◽  
Joseph B. Borghese ◽  
Raj M. Manglik

Enhanced heat transfer characteristics of low Reynolds number airflows in three-dimensional sinusoidal wavy plate-fin channels are investigated. For the computational simulation, steady state, constant property, periodically developed, laminar forced convection is considered with the channel surface at the uniform heat flux condition; the wavy-fin is modeled by its two asymptotic limits of 100% and zero fin efficiency. The governing equations are solved numerically using finite-volume techniques for a non-orthogonal, non-staggered grid. Computational results for velocity and temperature distribution, isothermal Fanning friction factor f and Colburn factor j are presented for airflow rates in the range of 10 ≤ Re ≤ 1500. The numerical results are further compared with experimental data, with excellent agreement, for two different wavy-fin geometries. The influence of fin density on the flow behavior and the enhanced convection heat transfer are highlighted. Depending on the flow rate, a complex flow structure is observed, which is characterized by the generation, spatial growth and dissipation of vortices in the trough region of the wavy channel. The thermal boundary layers on the fin surface are periodically disrupted, resulting in high local heat fluxes. The overall heat transfer performance is improved considerably, compared to the straight channel with the same cross-section, with a relatively smaller increase in the associated pressure drop penalty.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


2016 ◽  
Vol 46 (1) ◽  
pp. 275-287 ◽  
Author(s):  
Cédric P. Chavanne ◽  
Patrice Klein

AbstractA quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation.


2018 ◽  
Vol 840 ◽  
pp. 266-290 ◽  
Author(s):  
S. M. Iman Gohari ◽  
Sutanu Sarkar

Stratified flow in nocturnal boundary layers is studied using direct numerical simulation (DNS) of the Ekman layer, a model problem that is useful to understand atmospheric boundary-layer (ABL) turbulence. A stabilizing buoyancy flux is applied for a finite time to a neutral Ekman layer. Based on previous studies and the simulations conducted here, the choice of $L_{\mathit{cri}}^{+}=Lu_{\ast }/\unicode[STIX]{x1D708}\approx 700$ ($L$ is the Obukhov length scale and $u_{\ast }$ is the friction velocity) provides a cooling flux that is sufficiently strong to cause the initial collapse of turbulence. The turbulent kinetic energy decays over a time scale of $4.06L/u_{\ast }$ during the collapse. The simulations suggest that imposing $L_{\mathit{cri}}^{+}\approx 700$ on the neutral Ekman layer results in turbulence collapse during the initial transient, independent of Reynolds number, $Re_{\ast }$. However, the long-time state of the flow, i.e. turbulent with spatial intermittency or non-turbulent, is found to depend on the initial value of $Re_{\ast }$ since the cooling flux and resultant stratification increase with $Re_{\ast }$ for a given $L^{+}$. The lower-$Re_{\ast }$ cases have sustained turbulence with shear and stratification profiles that evolve in a manner such that the gradient Richardson number, $Ri_{g}$, in the near-surface layer, including the low-level jet, remains subcritical. The highest $Re_{\ast }$ case has supercritical $Ri_{g}$ in the low-level jet and turbulence does not recover. A theoretical discussion is performed to infer that the bulk Richardson number, $Ri_{b}$, is more suitable than $L^{+}$ to determine the fate of stratified Ekman layers at late time. DNS results support the implications of $Ri_{b}$ for the effect of initial $Re_{\ast }$ and $L^{+}$ on the flow.


2018 ◽  
Vol 75 (7) ◽  
pp. 2157-2174 ◽  
Author(s):  
Konstantinos Menelaou ◽  
M. K. Yau ◽  
Tsz-Kin Lai

Abstract It is known that concentric eyewalls can influence tropical cyclone (TC) intensity. However, they can also influence TC track. Observations indicate that TCs with concentric eyewalls are often accompanied by wobbling of the inner eyewall, a motion that gives rise to cycloidal tracks. Currently, there is no general consensus of what might constitute the dominant triggering mechanism of these wobbles. In this paper we revisit the fundamentals. The control case constitutes a TC with symmetric concentric eyewalls embedded in a quiescent environment. Two sets of experiments are conducted: one using a two-dimensional nondivergent nonlinear model and the other using a three-dimensional nonlinear model. It is found that when the system is two-dimensional, no wobbling of the inner eyewall is triggered. On the other hand, when the third dimension is introduced, an amplifying wobble is evident. This result contradicts the previous suggestion that wobbles occur only in asymmetric concentric eyewalls. It also contradicts the suggestion that environmental wind shear can be the main trigger. Examination of the dynamics along with complementary linear eigenmode analysis revealed the triggering mechanism to be the excitation of a three-dimensional exponentially growing azimuthal wavenumber-1 instability. This instability is induced by the coupling of two baroclinic vortex Rossby waves across the moat region. Additional sensitivity analyses involving reasonable modifications to vortex shape parameters, perturbation vertical length scale, and Rossby number reveal that this instability can be systematically the most excited. The growth rates are shown to peak for perturbations characterized by realistic vertical length scales, suggesting that this mechanism can be potentially relevant to actual TCs.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


1988 ◽  
Vol 25 (04) ◽  
pp. 253-261
Author(s):  
Michael S. Pantazopoulos

A methodology is proposed to solve the problem of the three-dimensional flow of water sloshing on the deck of a vessel, and to calculate the resulting forces and moments at the center of gravity. The Eulerian equations of motion of the water particle for incompressible inviscid shallow water flow are formulated with respect to a system attached to the oscillating vessel. The system of the nonlinear hyperbolic equations of motion is solved numerically using Glimm's method (random-choice method). Complex flow patterns consisting of oblique bores and "swirling" motions of the water on deck were revealed, for a vessel oscillating in roll and pitch motions, for a wide range of excitation frequencies. Large accumulation of water occurs at the corners while parts of the deck become dry. Significant rolling moments due to sloshing are exerted on the vessel. These must be taken into account when the dynamic response of the vessel is studied.


Sign in / Sign up

Export Citation Format

Share Document