scholarly journals Eddy Phase Speeds in a Two-Layer Model of Quasigeostrophic Baroclinic Turbulence with Applications to Ocean Observations

2016 ◽  
Vol 46 (6) ◽  
pp. 1963-1985 ◽  
Author(s):  
Lei Wang ◽  
Malte Jansen ◽  
Ryan Abernathey

AbstractThe phase speed spectrum of ocean mesoscale eddies is fundamental to understanding turbulent baroclinic flows. Since eddy phase propagation has been shown to modulate eddy fluxes, an understanding of eddy phase speeds is also of practical importance for the development of improved eddy parameterizations for coarse resolution ocean models. However, it is not totally clear whether and how linear Rossby wave theory can be used to explain the phase speed spectra in various weakly turbulent flow regimes. Using linear analysis, theoretical constraints are identified that control the eddy phase speed in a two-layer quasigeostrophic (QG) model. These constraints are then verified in a series of nonlinear two-layer QG simulations, spanning a range of parameters with potential relevance to the ocean. In the two-layer QG model, the strength of the inverse cascade exerts an important control on the eddy phase speed. If the inverse cascade is weak, the phase speed spectrum is reasonably well approximated by the phase speed of the linearly most unstable mode. A significant inverse cascade instead leads to barotropization, which in turn leads to mean phase speeds closer to those of barotropic-mode Rossby waves. The two-layer QG results are qualitatively consistent with the observed eddy phase speed spectra in the Antarctic Circumpolar Current and may also shed light on the interpretation of phase speed spectra observed in other regions.

Author(s):  
Hongjie Li ◽  
Yongsheng Xu

AbstractStratified geostrophic turbulence theory predicts an inverse energy cascade for the barotropic (BT) mode. Satellite altimetry has revealed a net inverse cascade in the baroclinic (BC) mode. Here the spatial variabilities of BT and BC kinetic energy fluxes in the Antarctic Circumpolar Current (ACC) were investigated using ECCO2 data, which synthesizes satellite data and in situ measurements with an eddy-permitting general circulation models containing realistic bathymetry and wind forcing. The BT and BC inverse kinetic energy cascades both reveal complex spatial variations that could not be explained fully by classical arguments. For example, the BC injection scales match better with most unstable scales than with the first-mode deformation scales, but the opposite is true for the BT mode. In addition, the BT and BC arrest scales do not follow the Rhines scale well in term of spatial variation, but show better consistency with their own energy-containing scales. The reverse cascade of the BT and BC modes was found related to their EKE, and better correlation was found between the BT inverse cascade and barotropization. Speculations of the findings were proposed. however, further observations and modeling experiments are needed to test these interpretations. Spectral flux anisotropy exhibits a feature associated with oceanic jets that is consistent with classical expectations. Specifically, the spectral flux along the along-stream direction remains negative at scales up to that of the studied domain (~2000km), while that in the perpendicular direction becomes positive close to the scale of the width of a typical jet.


2018 ◽  
Vol 48 (7) ◽  
pp. 1589-1607 ◽  
Author(s):  
V. O. Ivchenko ◽  
V. B. Zalesny ◽  
B. Sinha

AbstractThe question of whether the coefficient of diffusivity of potential vorticity by mesoscale eddies is positive is studied for a zonally reentrant barotropic channel using the quasigeostrophic approach. The topography is limited to the first mode in the meridional direction but is unlimited in the zonal direction. We derive an analytic solution for the stationary (time independent) solution. New terms associated with parameterized eddy fluxes of potential vorticity appear both in the equations for the mean zonal momentum balance and in the kinetic energy balance. These terms are linked with the topographic form stress exerted by parameterized eddies. It is demonstrated that in regimes with zonal flow (analogous to the Antarctic Circumpolar Current), the coefficient of eddy potential vorticity diffusivity must be positive.


2013 ◽  
Vol 43 (5) ◽  
pp. 941-955 ◽  
Author(s):  
Jan D. Zika ◽  
Julien Le Sommer ◽  
Carolina O. Dufour ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

Abstract The overturning circulation of the Southern Ocean has been investigated using eddying coupled ocean–sea ice models. The circulation is diagnosed in both density–latitude coordinates and in depth–density coordinates. Depth–density coordinates follow streamlines where the Antarctic Circumpolar Current is equivalent barotropic, capture the descent of Antarctic Bottom Water, follow density outcrops at the surface, and can be interpreted energetically. In density–latitude coordinates, wind-driven northward transport of light water and southward transport of dense water are compensated by standing meanders and to a lesser degree by transient eddies, consistent with previous results. In depth–density coordinates, however, wind-driven upwelling of dense water and downwelling of light water are compensated more strongly by transient eddy fluxes than fluxes because of standing meanders. Model realizations are discussed where the wind pattern of the southern annular mode is amplified. In density–latitude coordinates, meridional fluxes because of transient eddies can increase to counter changes in Ekman transport and decrease in response to changes in the standing meanders. In depth–density coordinates, vertical fluxes because of transient eddies directly counter changes in Ekman pumping.


2014 ◽  
Vol 44 (10) ◽  
pp. 2593-2616 ◽  
Author(s):  
Ross Tulloch ◽  
Raffaele Ferrari ◽  
Oliver Jahn ◽  
Andreas Klocker ◽  
Joseph LaCasce ◽  
...  

Abstract The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.


2017 ◽  
Vol 47 (6) ◽  
pp. 1291-1305 ◽  
Author(s):  
Madeleine K. Youngs ◽  
Andrew F. Thompson ◽  
Ayah Lazar ◽  
Kelvin J. Richards

AbstractAlong-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document