Suppression of Baroclinic Instabilities in Buoyancy-Driven Flow over Sloping Bathymetry

2017 ◽  
Vol 47 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Robert D. Hetland

AbstractBaroclinic instabilities are ubiquitous in many types of geostrophic flow; however, they are seldom observed in river plumes despite strong lateral density gradients within the plume front. Supported by results from a realistic numerical simulation of the Mississippi–Atchafalaya River plume, idealized numerical simulations of buoyancy-driven flow are used to investigate baroclinic instabilities in buoyancy-driven flow over a sloping bottom. The parameter space is defined by the slope Burger number S = Nf−1α, where N is the buoyancy frequency, f is the Coriolis parameter, and α is the bottom slope, and the Richardson number Ri = N2f2M−4, where M2 = |∇Hb| is the magnitude of the lateral buoyancy gradients. Instabilities only form in a subset of the simulations, with the criterion that SH ≡ SRi−1/2 = Uf−1W−1 = M2f−2α 0.2, where U is a horizontal velocity scale and SH is a new parameter named the horizontal slope Burger number. Suppression of instability formation for certain flow conditions contrasts linear stability theory, which predicts that all flow configurations will be subject to instabilities. The instability growth rate estimated in the nonlinear 3D model is proportional to ωImaxS−1/2, where ωImax is the dimensional growth rate predicted by linear instability theory, indicating that bottom slope inhibits instability growth beyond that predicted by linear theory. The constraint SH 0.2 implies a relationship between the inertial radius Li = Uf−1 and the plume width W. Instabilities may not form when 5Li > W; that is, the plume is too narrow for the eddies to fit.

2015 ◽  
Vol 778 ◽  
pp. 120-132 ◽  
Author(s):  
Mario Weder ◽  
Michael Gloor ◽  
Leonhard Kleiser

We present a decomposition of the temporal growth rate ${\it\omega}_{i}$ which characterises the evolution of wave-like disturbances in linear stability theory for compressible flows. The decomposition is based on the disturbance energy balance by Chu (Acta Mech., vol. 1 (3), 1965, pp. 215–234) and provides terms for production, dissipation and flux of energy as components of ${\it\omega}_{i}$. The inclusion of flux terms makes our formulation applicable to unconfined flows and flows with permeable or vibrating boundaries. The decomposition sheds light on the fundamental mechanisms determining temporal growth or decay of disturbances. The additional insights gained by the proposed approach are demonstrated by an investigation of two model flows, namely compressible Couette flow and a plane compressible jet.


2009 ◽  
Vol 66 (4) ◽  
pp. 1063-1068 ◽  
Author(s):  
Ross Tulloch ◽  
K. Shafer Smith

Abstract The quasigeostrophic equations consist of the advection of linearized potential vorticity coupled with advection of temperature at the bounding upper and lower surfaces. Numerical models of quasigeostrophic flow often employ greater (scaled) resolution in the horizontal than in the vertical (the two-layer model is an extreme example). In the interior, this has the effect of suppressing interactions between layers at horizontal scales that are small compared to Nδz/f (where δz is the vertical resolution, N the buoyancy frequency, and f the Coriolis parameter). The nature of the turbulent cascade in the interior is, however, not fundamentally altered because the downscale cascade of potential enstrophy in quasigeostrophic turbulence and the downscale cascade of enstrophy in two-dimensional turbulence (occurring layerwise) both yield energy spectra with slopes of −3. It is shown here that a similar restriction on the vertical resolution applies to the representation of horizontal motions at the surfaces, but the penalty for underresolving in the vertical is complete suppression of the surface temperature cascade at small scales and a corresponding artificial steepening of the surface energy spectrum. This effect is demonstrated in the nonlinear Eady model, using a finite-difference representation in comparison with a model that explicitly advects temperature at the upper and lower surfaces. Theoretical predictions for the spectrum of turbulence in the nonlinear Eady model are reviewed and compared to the simulated flows, showing that the latter model yields an accurate representation of the cascade dynamics. To accurately represent dynamics at horizontal wavenumber K in the vertically finite-differenced model, it is found that the vertical grid spacing must satisfy δz ≲ 0.3f/(NK); at wavenumbers K > 0.3f/(Nδz), the spectrum of temperature variance rolls off rapidly.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 931-943 ◽  
Author(s):  
I. Bashmachnikov ◽  
X. Carton

Abstract. Meddies, intra-thermocline eddies of Mediterranean water, can often be detected at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry. While pushing its way through the water column, a meddy raises isopycnals above. As a consequence of potential vorticity conservation, negative relative vorticity is generated in the upper layer. During the initial period of meddy acceleration after meddy formation or after a stagnation stage, a cyclonic signal is also generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy. Based on geostrophy and potential vorticity balance, we present theoretical estimates of the intensity of the surface signature. It appears to be proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Using climatic distribution of the stratification intensity, we claim that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 10–15 km) should lie in the subtropics (35–45° N), while large meddies (with radii of 25–30 km) could be detected as far south as the northern tropics (25–35° N). Those results agree with observations.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
M. Mahdavi ◽  
H. Khanzadeh

Weibel electromagnetic instability has been studied analytically in relativistic plasma with high parallel temperature, where|α=(mc2/T∥)(1+p^⊥2/m2c2)1/2|≪1and while the collision effects of electron-ion scattering have also been considered. According to these conditions, an analytical expression is derived for the growth rate of the Weibel instability for a limiting case of|ζ=α/2(ω′/ck)|≪1, whereω′is the sum of the wave frequency of instability and the collision frequency of electrons with background ions. The results show that in the limiting conditionα≪1there is an unusual situation of the Weibel instability so thatT∥≫T⊥, while in the classic Weibel instabilityT∥≪T⊥. The obtained results show that the growth rate of the Weibel instability will be decreased due to an increase in the number of collisions and a decrease in the anisotropic temperature by the increasing of plasma density, while the increase of the parameterγ^⊥=(1+p^⊥2/m2c2)1/2leads to the increase of the Weibel instability growth rate.


1995 ◽  
Author(s):  
H.V. Wong ◽  
H.L. Berk ◽  
B.N. Breizman

Author(s):  
Bhimsen Shivamoggi ◽  
G Heijst ◽  
Leon Kamp

Abstract The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 39 ◽  
Author(s):  
Roger Grimshaw

The linear stability theory of wind-wave generation is revisited with an emphasis on the generation of wave groups. The outcome is the fundamental requirement that the group move with a real-valued group velocity. This implies that both the wave frequency and the wavenumber should be complex-valued, and in turn this then leads to a growth rate in the reference frame moving with the group velocity which is in general different from the temporal growth rate. In the weakly nonlinear regime, the amplitude envelope of the wave group is governed by a forced nonlinear Schrödinger equation. The effect of the wind forcing term is to enhance modulation instability both in terms of the wave growth and in terms of the domain of instability in the modulation wavenumber space. Also, the soliton solution for the wave envelope grows in amplitude at twice the linear growth rate.


2015 ◽  
Vol 780 ◽  
pp. 687-716 ◽  
Author(s):  
Hugo Umberto Quaranta ◽  
Hadrien Bolnot ◽  
Thomas Leweke

We investigate the instability of a single helical vortex filament of small pitch with respect to displacement perturbations whose wavelength is large compared to the vortex core size. We first revisit previous theoretical analyses concerning infinite Rankine vortices, and consider in addition the more realistic case of vortices with Gausssian vorticity distributions and axial core flow. We show that the various instability modes are related to the local pairing of successive helix turns through mutual induction, and that the growth rate curve can be qualitatively and quantitatively predicted from the classical pairing of an array of point vortices. We then present results from an experimental study of a helical vortex filament generated in a water channel by a single-bladed rotor under carefully controlled conditions. Various modes of displacement perturbations could be triggered by suitable modulation of the blade rotation. Dye visualisations and particle image velocimetry allowed a detailed characterisation of the vortex geometry and the determination of the growth rate of the long-wave instability modes, showing good agreement with theoretical predictions for the experimental base flow. The long-term (downstream) development of the pairing instability leads to a grouping and swapping of helix loops. Despite the resulting complicated three-dimensional structure, the vortex filaments surprisingly remain mostly intact in our observation interval. The characteristic distance of evolution of the helical wake behind the rotor decreases with increasing initial amplitude of the perturbations; this can be predicted from the linear stability theory.


Sign in / Sign up

Export Citation Format

Share Document