scholarly journals Interaction of near-inertial waves with an anticyclonic vortex

Author(s):  
Hossein A. Kafiabad ◽  
Jacques Vanneste ◽  
William R. Young

AbstractAnticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initialwave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures, and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both linear and nonlinear predictions agree convincingly with the Boussinesq results.

1984 ◽  
Vol 146 ◽  
pp. 1-20 ◽  
Author(s):  
P. J. Bryant

Oblique wave groups consist of waves whose straight parallel lines of constant phase are oblique to the straight parallel lines of constant group phase. Numerical solutions for periodic oblique wave groups with envelopes of permanent shape are calculated from the equations for irrotational three-dimensional deep-water motion with nonlinear upper free-surface conditions. Two distinct families of periodic wave groups are found, one in which the waves in each group are in phase with those in all other groups, and the other in which there is a phase difference of π between the waves in consecutive groups. It is shown that some analytical solutions for oblique wave groups calculated from the nonlinear Schrödinger equation are in error because they ignore the resonant forcing of certain harmonics in two dimensions. Particular attention is given to oblique wave groups whose group-to-wave angle is in the neighbourhood of the critical angle tan−1√½, corresponding to waves on the boundary wedge of the Kelvin ship-wave pattern.


2014 ◽  
Vol 71 (5) ◽  
pp. 1701-1723 ◽  
Author(s):  
Bo-Wen Shen

Abstract In this study, based on the number of modes, the original three-dimensional Lorenz model (3DLM) is generalized with two additional modes [five-dimensional Lorenz model (5DLM)] to examine their role in the predictability of the numerical solutions and to understand the underlying processes that increase the solution stability. As a result of the simplicity of the 5DLM with respect to existing generalized Lorenz models (LMs), the author is able to obtain the analytical solutions of its critical points and identify the role of the major nonlinear term in the solution’s stability, which have previously not been documented in the literature. The nonlinear Jacobian terms of the governing equations are analyzed to highlight the importance of selecting new modes for extending the nonlinear feedback loop of the 3DLM and thus effectively increasing the degree of nonlinearity (i.e., the nonlinear mode–mode interactions) in the 5DLM. It is then shown that numerical solutions in the 5DLM require a larger normalized Rayleigh number r for the onset of chaos and are more predictable than those in the 3DLM when r is between 25 and 40 and the Prandtl number σ is 10. The improved predictability is attributable to the negative nonlinear feedback enabled by the new modes. The role of the (negative) nonlinear feedback is further verified using a revised 3DLM with a parameterized nonlinear eddy dissipative term. The finding of the increased stability in the 5DLM and revised 3DLM with respect to the 3DLM is confirmed with the linear stability analysis and the analysis of the Lyapunov exponents using different values of r and σ. To further understand the impact of an additional heating term, results from the 5DLM and a higher-dimensional LM [e.g., the six-dimensional LM (6DLM)] are analyzed and compared.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
D. Zhou ◽  
S. H. Lo

The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.


Author(s):  
Abdullah Guvendi

We investigate the dynamics of a composite system ([Formula: see text]) consisting of an interacting fermion–antifermion pair in the three-dimensional space–time background generated by a static point source. By considering the interaction between the particles as Dirac oscillator coupling, we analyze the effects of space–time topology on the energy of such a [Formula: see text]. To achieve this, we solve the corresponding form of a two-body Dirac equation (fully-covariant) by assuming the center-of-mass of the particles is at rest and locates at the origin of the spatial geometry. Under this assumption, we arrive at a nonperturbative energy spectrum for the system in question. This spectrum includes spin coupling and depends on the angular deficit parameter [Formula: see text] of the geometric background. This provides a suitable basis to determine the effects of the geometric background on the energy of the [Formula: see text] under consideration. Our results show that such a [Formula: see text] behaves like a single quantum oscillator. Then, we analyze the alterations in the energy levels and discuss the limits of the obtained results. We show that the effects of the geometric background on each energy level are not same and there can be degeneracy in the energy levels for small values of the [Formula: see text].


2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Sofia Sarraf ◽  
Ezequiel López ◽  
Laura Battaglia ◽  
Gustavo Ríos Rodríguez ◽  
Jorge D'Elía

In the boundary element method (BEM), the Galerkin weighting technique allows to obtain numerical solutions of a boundary integral equation (BIE), giving the Galerkin boundary element method (GBEM). In three-dimensional (3D) spatial domains, the nested double surface integration of GBEM leads to a significantly larger computational time for assembling the linear system than with the standard collocation method. In practice, the computational time is roughly an order of magnitude larger, thus limiting the use of GBEM in 3D engineering problems. The standard approach for reducing the computational time of the linear system assembling is to skip integrations whenever possible. In this work, a modified assembling algorithm for the element matrices in GBEM is proposed for solving integral kernels that depend on the exterior unit normal. This algorithm is based on kernels symmetries at the element level and not on the flow nor in the mesh. It is applied to a BIE that models external creeping flows around 3D closed bodies using second-order kernels, and it is implemented using OpenMP. For these BIEs, the modified algorithm is on average 32% faster than the original one.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6424
Author(s):  
Cheng-Hung Huang ◽  
Chih-Yang Kuo

A non-linear three-dimensional inverse shape design problem was investigated for a pipe type heat exchanger to estimate the design variables of continuous lateral ribs on internal Z-shape lateral fins for maximum thermal performance factor η. The design variables were considered as the positions, heights, and number of ribs while the physical properties of air were considered as a polynomial function of temperature; this makes the problem non-linear. The direct problem was solved using software package CFD-ACE+, and the Levenberg–Marquardt method (LMM) was utilized as the optimization tool because it has been proven to be a powerful algorithm for solving inverse problems. Z-shape lateral fins were found to be the best thermal performance among Z-shape, S-shape, and V-shape lateral fins. The objective of this study was to include continuous lateral ribs to Z-shape lateral fins to further improve η. Firstly, the numerical solutions of direct problem were solved using both polynomial and constant air properties and then compared with the corrected solutions to verify the necessity for using polynomial air properties. Then, four design cases, A, B, C and D, based on various design variables were conducted numerically, and the resultant η values were computed and compared. The results revealed that considering continuous lateral ribs on the surface of Z-shape lateral fins can indeed improve η value at the design working condition Re = 5000. η values of designs A, B and C were approximately 13% higher than that for Z-shape lateral fins, however, when the rib numbers were increased, i.e., design D, the value of η became only 11.5 % higher. This implies that more ribs will not guarantee higher η value.


Sign in / Sign up

Export Citation Format

Share Document