A Drop Size Distribution (DSD)-Based Model for Evaluating the Performance of Wet Radomes for Dual-Polarized Radars

2014 ◽  
Vol 31 (11) ◽  
pp. 2409-2430 ◽  
Author(s):  
Jorge L. Salazar-Cerreño ◽  
V. Chandrasekar ◽  
Jorge M. Trabal ◽  
Paul Siquera ◽  
Rafael Medina ◽  
...  

AbstractA novel analytical method is presented for evaluating the electrical performance of a radome for a dual-polarized phased-array antenna under rain conditions. Attenuation, reflections, and induced cross polarization are evaluated for different rainfall conditions and radome types. The authors present a model for estimating the drop size distribution on a radome surface based on skin surface material, area, inclination, and rainfall rate. Then, a multilayer radome model based on the transmission-line-equivalent circuit model is used to characterize the radome’s scattering parameters. Numerical results are compared with radar data obtained in the Next Generation Weather Radar (NEXRAD) and Collaborative Adaptive Sensing of the Atmosphere (CASA) systems, and good agreement is found.

2008 ◽  
Vol 25 (5) ◽  
pp. 729-741 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract The recent advances in attenuation correction methodology are based on the use of a constraint represented by the total amount of the attenuation encountered along the path shared over each range bin in the path. This technique is improved by using the inner self-consistency of radar measurements. The full self-consistency methodology provides an optimization procedure for obtaining the best estimate of specific and cumulative attenuation and specific and cumulative differential attenuation. The main goal of the study is to examine drop size distribution (DSD) retrieval from X-band radar measurements after attenuation correction. A new technique for estimating the slope of a linear axis ratio model from polarimetric radar measurements at attenuated frequencies is envisioned. A new set of improved algorithms immune to variability in the raindrop shape–size relation are presented for the estimation of the governing parameters characterizing a gamma raindrop size distribution. Simulations based on the use of profiles of gamma drop size distribution parameters obtained from S-band observations are used for quantitative analysis. Radar data collected by the NOAA/Earth System Research Laboratory (ESRL) X-band polarimetric radar are used to provide examples of the DSD parameter retrievals using attenuation-corrected radar measurements. Retrievals agree fairly well with disdrometer data. The radar data are also used to observe the prevailing shape of raindrops directly from the radar measurements. A significant result is that oblateness of drops is bounded between the two shape models of Pruppacher and Beard, and Beard and Chuang, the former representing the upper boundary and the latter the lower boundary.


2020 ◽  
Vol 13 (9) ◽  
pp. 4727-4750
Author(s):  
Viswanathan Bringi ◽  
Kumar Vijay Mishra ◽  
Merhala Thurai ◽  
Patrick C. Kennedy ◽  
Timothy H. Raupach

Abstract. The lower-order moments of the drop size distribution (DSD) have generally been considered difficult to retrieve accurately from polarimetric radar data because these data are related to higher-order moments. For example, the 4.6th moment is associated with a specific differential phase and the 6th moment with reflectivity and ratio of high-order moments with differential reflectivity. Thus, conventionally, the emphasis has been to estimate rain rate (3.67th moment) or parameters of the exponential or gamma distribution for the DSD. Many double-moment “bulk” microphysical schemes predict the total number concentration (the 0th moment of the DSD, or M0) and the mixing ratio (or equivalently, the 3rd moment M3). Thus, it is difficult to compare the model outputs directly with polarimetric radar observations or, given the model outputs, forward model the radar observables. This article describes the use of double-moment normalization of DSDs and the resulting stable intrinsic shape that can be fitted by the generalized gamma (G-G) distribution. The two reference moments are M3 and M6, which are shown to be retrievable using the X-band radar reflectivity, differential reflectivity, and specific attenuation (from the iterative correction of measured reflectivity Zh using the total Φdp constraint, i.e., the iterative ZPHI method). Along with the climatological shape parameters of the G-G fit to the scaled/normalized DSDs, the lower-order moments are then retrieved more accurately than possible hitherto. The importance of measuring the complete DSD from 0.1 mm onwards is emphasized using, in our case, an optical array probe with 50 µm resolution collocated with a two-dimensional video disdrometer with about 170 µm resolution. This avoids small drop truncation and hence the accurate calculation of lower-order moments. A case study of a complex multi-cell storm which traversed an instrumented site near the CSU-CHILL radar is described for which the moments were retrieved from radar and compared with directly computed moments from the complete spectrum measurements using the aforementioned two disdrometers. Our detailed validation analysis of the radar-retrieved moments showed relative bias of the moments M0 through M2 was <15 % in magnitude, with Pearson’s correlation coefficient >0.9. Both radar measurement and parameterization errors were estimated rigorously. We show that the temporal variation of the radar-retrieved mass-weighted mean diameter with M0 resulted in coherent “time tracks” that can potentially lead to studies of precipitation evolution that have not been possible so far.


2007 ◽  
Vol 24 (11) ◽  
pp. 1839-1859 ◽  
Author(s):  
Katja Friedrich ◽  
Urs Germann ◽  
Jonathan J. Gourley ◽  
Pierre Tabary

Abstract Radar reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) measured from the operational, polarimetric weather radar located in Trappes, France, were used to examine the effects of radar beam shielding on rainfall estimation. The objective of this study is to investigate the degree of immunity of Kdp-based rainfall estimates to beam shielding for C-band radar data during four typical rain events encountered in Europe. The rain events include two cold frontal rainbands with average rainfall rates of 7 and 17 mm h−1, respectively, and two summertime convective rain events with average rainfall rates of 11 and 22 mm h−1. The large effects of beam shielding on rainfall accumulation were observed for algorithms using Zh and Zdr with differences of up to ∼2 dB (40%) compared to a Kdp-based algorithm over a power loss range of 0–8 dB. This analysis reveals that Zdr and Kdp are not affected by partial beam shielding. Standard reflectivity corrections based on the degree of beam shielding would have overestimated rainfall rates by up to 1.5 dB for less than 40% beam shielding and up to 3 dB for beam shielding less than 75%. The investigation also examined the sensitivity of beam shielding effects on rainfall rate estimation to (i) axis–ratio parameterization and drop size distribution, (ii) methods used to smooth profiles of differential propagation phase (ϕdp) and estimate Kdp, and (iii) event-to-event variability. Although rainfall estimates were sensitive to drop size distribution and axis–ratio parameterization, differences between Zh- and Kdp-based rainfall rates increased independently from those parameters with amount of shielding. Different approaches to smoothing ϕdp profiles and estimating Kdp were examined and showed little impact on results.


2012 ◽  
Vol 13 (3) ◽  
pp. 1066-1079 ◽  
Author(s):  
M. Thurai ◽  
V. N. Bringi ◽  
L. D. Carey ◽  
P. Gatlin ◽  
E. Schultz ◽  
...  

Abstract The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D0), and normalized intercept parameter (NW), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special “near-dwelling” mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar–based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the “point-to-area” variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D0 (8.24 km). For log10(NW), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D0, log10(NW), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D0, log10(NW), and R, respectively. The normalized bias was &lt;1%. These correspond to time resolution of ~3 min and spatial resolution of ~1.5 km.


2020 ◽  
Author(s):  
Viswanathan Bringi ◽  
Kumar Vijay Mishra ◽  
Merhala Thurai ◽  
Patrick C. Kennedy ◽  
Timothy H. Raupach

Abstract. The lower order moments of the drop size distribution (DSD) have generally been considered as difficult to retrieve accurately from polarimetric radar data because these are related to higher order moments. For example, the 4.5th moment is associated with specific differential phase, 6th moment with reflectivity and ratio of high order moments with differential reflectivity. Thus, conventionally, the emphasis has been to estimate rain rate (3.67th moment) or parameters of the exponential or gamma distribution. Many double-moment bulk microphysical schemes predict the total number concentration (the 0th moment or M0) and the mixing ratio (or equivalently, the 3rd moment M3). Thus, it is difficult to compare the model outputs directly with polarimetric radar observations or, given the model outputs, to forward model the radar observables. This article describes the use of double-moment normalization of DSDs and the resulting stable intrinsic shape that can be fitted to the generalized gamma (G-G) distribution. The two reference moments are M3 and M6 which are shown to be retrievable using the X-band radar reflectivity, differential reflectivity and specific attenuation (from the iterative ZPHI method). Along with the climatological shape parameters of the G-G fit to the scaled/normalized DSDs, the lower order moments are then retrieved more accurately than possible hitherto. The importance of measuring the complete DSD from 0.1 mm onwards is emphasized using, in our case, an optical array probe with 50 µm resolution collocated with a two-dimensional video disdrometer with 170 µm resolution. This avoids small drop truncation and hence the accurate calculation of lower order moments. A case study of a complex multi-cell storm which traversed an instrumented site near the CSU-CHILL radar is described for which the moments were retrieved and compared with directly computed moments from the complete spectrum measurements using the aforementioned two disdrometers. Our detailed validation analysis of the radar-retrieved moments showed relative bias of the moments M0 through M2 was  0.9. Both radar measurement and parameterization errors were estimated rigorously. We show that the temporal variation of the radar-retrieved characteristic diameter with M0 resulted in coherent time tracks that can potentially lead to studies of precipitation evolution that have not been possible so far.


2012 ◽  
Vol 29 (11) ◽  
pp. 1603-1616 ◽  
Author(s):  
V. N. Bringi ◽  
Gwo-Jong Huang ◽  
S. Joseph Munchak ◽  
Christian D. Kummerow ◽  
David A. Marks ◽  
...  

Abstract The estimation of the drop size distribution parameter [median volume diameter (D0)] and rain rate (R) from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) as well as from combined PR–TRMM Microwave Imager (TMI) algorithms are considered in this study for two TRMM satellite overpasses near the Kwajalein Atoll. An operational dual-polarized S-band radar (KPOL) located in Kwajalein is central as the only TRMM ground validation site for measurement of precipitation over the open ocean. The accuracy of the TRMM PR in retrieving D0 and R is better for precipitation over the ocean based on a more stable surface reference technique for estimating the path-integrated attenuation. Also, combined PR–TMI methods are more accurate over the open ocean because of better knowledge of the surface microwave emissivity. Using Zh (horizontal polarized radar reflectivity) and Zdr (differential reflectivity) data for the two TRMM overpass events over Kwajalein, D0 and R from KPOL are retrieved. Herein, the main objective is to see if the D0 retrieved from either PR or the combined PR–TMI algorithms are in agreement with KPOL-derived values. Also, the variation of D0 versus R is compared for convective rain pixels from KPOL, PR, and PR–TMI. It is shown that the PR–TMI optimal estimation scheme does indeed adjust the D0 in the “correct” direction, on average, from the a priori state if the KPOL data are considered to be the ground truth. This correct adjustment may be considered as evidence of the value added by the TMI brightness temperatures in the combined PR–TMI variational scheme, at least for the two overpass events considered herein.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 979
Author(s):  
Lina Rivelli Zea ◽  
Stephen W. Nesbitt ◽  
Alfonso Ladino ◽  
Joseph C. Hardin ◽  
Adam Varble

This study compared drop size distribution (DSD) measurements on the surfaces, the corresponding properties, and the precipitation modes among three deep convective regions within the Americas. The measurement compilation corresponded to two sites in the midlatitudes: the U.S. Southern Great Plains and Córdoba Province in subtropical South America, as well as to one site in the tropics: Manacapuru in central Amazonia; these are all areas where intense rain-producing systems contribute to the majority of rainfall in the Americas’ largest river basins. This compilation included two types of disdrometers (Parsivel and 2D-Video Disdrometer) that were used at the midlatitude sites and one type of disdrometer (Parsivel) that was deployed at the tropical site. The distributions of physical parameters (such as rain rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw) for the raindrop spectra without rainfall mode classification seemed similar, except for the much broader Nw distributions in Córdoba. The raindrop spectra were then classified into a light precipitation mode and a precipitation mode by using a cutoff at 0.5 mm h−1 based on previous studies that characterized the full drop size spectra. These segregated rain modes are potentially unique relative to previously studied terrain-influenced sites. In the light precipitation and precipitation modes, the dominant higher frequency observed in a broad distribution of Nw in both types of disdrometers and the identification of shallow light precipitation in vertically pointing cloud radar data represent unique characteristics of the Córdoba site relative to the others. As a result, the co-variability between the physical parameters of the DSD indicates that the precipitation observed in Córdoba may confound existing methods of determining the rain type by using the drop size distribution.


Author(s):  
Carlos Del Castillo-Velarde ◽  
Shailendra Kumar ◽  
Jairo M. Valdivia-Prado ◽  
Aldo S. Moya-Álvarez ◽  
Jose Luis Flores-Rojas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document