scholarly journals Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameter from In Situ Measurements

2016 ◽  
Vol 33 (11) ◽  
pp. 2461-2476 ◽  
Author(s):  
D. Leroy ◽  
E. Fontaine ◽  
A. Schwarzenboeck ◽  
J. W. Strapp

AbstractEngine and air data probe manufacturers, as well as aviation agencies, are interested in better characterization of high ice water content (HIWC) areas close to thunderstorms, since HIWC conditions are suspected to cause in-service engine power loss and air data events on commercial aircraft. In this context, a collaborative field campaign has been conducted by high-altitude ice crystals (HAIC) and HIWC projects in order to provide ice water content and median mass diameter (MMD) of ice crystals in the HIWC environment.The computation of MMD from in situ measurements relies mainly on the definition of the crystal dimension D and on the relationship, which is used to convert number into mass distributions. The first part of this study shows that MMD can significantly deviate when using different mass–size relationships from the literature. Sensitivity tests demonstrate that MMD is significantly impacted by the choice of β. However, the larger contributor to MMD differences seems to be the choice of the size definition D itself.Since MMDs are quite sensitive to β, this study suggests a generic method for deducing β solely from optical array probes (OAPs) image data for various size definitions. The method is based on simulations of 3D crystal objects projected onto a 2D plane, thereby relating crystal mass to 2D area (projection) and perimeter. The MMD values calculated for different size definitions are quite similar, at least much closer than MMDs derived from different m(D) relationships in the literature.

2015 ◽  
Vol 54 (12) ◽  
pp. 2461-2477 ◽  
Author(s):  
E. Drigeard ◽  
E. Fontaine ◽  
W. Wobrock ◽  
A. Schwarzenböck ◽  
C. Duroure ◽  
...  

AbstractThis study addresses clouds with significant ice water content (IWC) in the stratiform regions downwind of the convective cores of African squall lines in the framework of the French–Indian satellite Megha-Tropiques project, observed in August 2010 next to Niamey (13.5°N, 2°E) in the southwestern part of Niger. The objectives included comparing the IWC–Z reflectivity relationship for precipitation radars in deep stratiform anvils, collocating reflectivity observed from ground radar with the calculated reflectivity from in situ microphysics for all aircraft locations inside the radar range, and interpreting the role of large ice crystals in the reflectivity of centimeter radars through analysis of their microphysical characteristics as ice crystals larger than 5 mm frequently occurred. It was found that, in the range of 20–30 dBZ, IWC and C-band reflectivity are not really correlated. Cloud regions with high IWC caused by important crystal number concentrations can lead to the same reflectivity factor as cloud regions with low IWC formed by a few millimeter-sized ice crystals.


2015 ◽  
Vol 54 (10) ◽  
pp. 2087-2097 ◽  
Author(s):  
Sujan Khanal ◽  
Zhien Wang

AbstractRemote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.


2013 ◽  
Vol 13 (8) ◽  
pp. 22535-22574
Author(s):  
J.-F. Gayet ◽  
V. Shcherbakov ◽  
L. Bugliaro ◽  
A. Protat ◽  
J. Delanoë ◽  
...  

Abstract. Two complementary case studies are conducted to analyse convective system properties in the region where strong cloud-top lidar backscatter anomalies are observed as reported by Platt et al. (2011). These anomalies were reported for the first time using in-situ microphysical measurements in an isolated continental convective cloud over Germany during the CIRCLE2 experiment (Gayet et al., 2012). In this case, quasi collocated in situ observations with CALIPSO, CloudSat and Meteosat-9/SEVIRI observations confirm that regions of backscatter anomalies represent the most active and dense convective cloud parts with likely the strongest core updrafts and unusual high values of the particle concentration, extinction and ice water content (IWC), with the occurrence of small ice crystal sizes. Similar spaceborne observations are then analyzed in a maritime mesoscale cloud system (MCS) on 20 June 2008 located off the Brazil coast between 0° and 3° N latitude. Near cloud-top backscatter anomalies are evidenced in a region which corresponds to the coldest temperatures with maximum cloud top altitudes derived from collocated CALIPSO/IIR and Meteosat-9/SEVIRI infrared brightness temperatures. The interpretation of CALIOP data highlights significant differences of microphysical properties from those observed in the continental isolated convective cloud. Indeed, SEVIRI retrievals in the visible confirm much smaller ice particles near-top of the isolated continental convective cloud, i.e. effective radius (Reff) ~15 μm against 22–27 μm in the whole MCS area. 94 GHz Cloud Profiling Radar observations from CloudSat are then used to describe the properties of the most active cloud regions at and below cloud top. The cloud ice water content and effective radius retrieved with the CloudSat 2B-IWC and DARDAR inversion techniques, show that at usual cruise altitudes of commercial aircraft (FL 350 or ~10 700 m level), high IWC (i.e. up to 2 to 4 g m−3) could be identified according to specific IWC-Z relationships. These values correspond to a maximum reflectivity factor of +18 dBZ (at 94 GHz). Near-top cloud properties also indicate signatures of microphysical characteristics according to the cloud-stage evolution as revealed by SEVIRI images to identify the development of new cells within the MCS cluster. It is argued that the availability of real time information of the km-scale cloud top IR brightness temperature decrease with respect to the cloud environment would help identify MCS cloud areas with potentially high ice water content and small particle sizes against which onboard meteorological radar may not be suitable to provide timely warning.


2011 ◽  
Vol 11 (1) ◽  
pp. 745-812 ◽  
Author(s):  
W. Frey ◽  
S. Borrmann ◽  
D. Kunkel ◽  
R. Weigel ◽  
M. de Reus ◽  
...  

Abstract. In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS) ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in-situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established in order to give a parameterisation for modelling. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles result from activation of the present aerosol, yielded low activation ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.


2020 ◽  
Vol 37 (4) ◽  
pp. 641-663
Author(s):  
Julie A. Haggerty ◽  
Allyson Rugg ◽  
Rodney Potts ◽  
Alain Protat ◽  
J. Walter Strapp ◽  
...  

AbstractThis paper describes development of a method for discriminating high ice water content (HIWC) conditions that can disrupt jet-engine performance in commuter and large transport aircraft. Using input data from satellites, numerical weather prediction models, and ground-based radar, this effort employs machine learning to determine optimal combinations of available information using fuzzy logic. Airborne in situ measurements of ice water content (IWC) from a series of field experiments that sampled HIWC conditions serve as training data in the machine-learning process. The resulting method, known as the Algorithm for Prediction of HIWC Areas (ALPHA), estimates the likelihood of HIWC conditions over a three-dimensional domain. Performance statistics calculated from an independent subset of data reserved for verification indicate that the ALPHA has skill for detecting HIWC conditions, albeit with significant false alarm rates. Probability of detection (POD), probability of false detection (POFD), and false alarm ratio (FAR) are 86%, 29% (60% when IWC below 0.1 g m−3 are omitted), and 51%, respectively, for one set of detection thresholds using in situ measurements. Corresponding receiver operating characteristic (ROC) curves give an area under the curve of 0.85 when considering all data and 0.69 for only points with IWC of at least 0.1 g m−3. Monte Carlo simulations suggest that aircraft sampling biases resulted in a positive POD bias and the actual probability of detection is between 78.5% and 83.1% (95% confidence interval). Analysis of individual case studies shows that the ALPHA output product generally tracks variation in the measured IWC.


2011 ◽  
Vol 11 (8) ◽  
pp. 23911-23958
Author(s):  
J.-F. Gayet ◽  
G. Mioche ◽  
L. Bugliaro ◽  
A. Protat ◽  
A. Minikin ◽  
...  

Abstract. During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C). The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2D-C) and nadir looking remote sensing observations (DLR WALES Lidar). Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively) are experienced. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The mean effective diameter is of 43 μm and the maximum particle size is about 300 μm. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC) and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g m−3 may be observed near the cloud top. Extrapolating the relationship for stronger convective clouds with similar ice particles, IWC up to 5 g m−3 could be experienced with reflectivity factors no larger than about 20 dBZ. This means that for similar situations, indication of rather weak radar echo does not necessarily warn the occurrence of high ice water content carried by small ice crystals. All along the cloud penetration the shape of the ice crystals is dominated by chain-like aggregates of frozen droplets. Our results confirm previous observations that the chains of ice crystals are found in a continental deep convective systems which are known generally to generate intense electric fields causing efficient ice particle aggregation processes. Vigorous updrafts could lift supercooled droplets which are frozen extremely rapidly by homogeneous nucleation near the −37 °C level, producing therefore high concentrations of very small ice particles at upper altitudes. They are sufficient to deplete the water vapour and suppress further nucleation as confirmed by humidity measurements. These observations address scientific issues related to the microphysical properties and structure of deep convective clouds and confirm that particles smaller than 50 μm may control the radiative properties in convective-related clouds. These unusual observations may also provide some possible insights regarding engineering issues related to the failure of jet engines commonly used on commercial aircraft during flights through areas of high ice water content.


2011 ◽  
Vol 11 (12) ◽  
pp. 5569-5590 ◽  
Author(s):  
W. Frey ◽  
S. Borrmann ◽  
D. Kunkel ◽  
R. Weigel ◽  
M. de Reus ◽  
...  

Abstract. In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established for modelling purposes. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles may result from activation of the present aerosol, yielded low ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document