Evaluation of the in situ Sea Surface Temperature Quality Control in the NOAA in situ SST Quality Monitor (iQuam) System

Author(s):  
Haifeng Zhang ◽  
Alexander Ignatov ◽  
Dean Hinshaw

AbstractIn situ sea surface temperature (SST) measurements play a critical role in the calibration/validation (Cal/Val) of satellite SST retrievals and ocean data assimilation. However, their quality is not always optimal, and proper quality control (QC) is required before they can be used with confidence. The in situ SST Quality Monitor (iQuam) system was established at the National Oceanic and Atmospheric Administration (NOAA) in 2009, initially to support the Cal/Val of NOAA satellite SST products. It collects in situ SST data from multiple sources, performs uniform QC, monitors the QC’ed data online, and distributes it to users. In this study, the iQuam QC is compared with other QC methods available in some of the in situ data ingested in iQuam. Overall, the iQuam QC performs well on daily-to-monthly time scales over most global oceans and under a wide variety of environmental conditions. However, it may be less accurate in the daytime a when pronounced diurnal cycle is present, and in dynamic regions, due to the strong reliance on the “reference SST check”, which employs daily low-resolution level 4 (L4) analyses with no diurnal cycle resolved. The iQuam “performance history check”, applied to all in situ platforms, is an effective alternative to the customary “black/gray” lists, available only for some platforms (e.g., drifters and Argo floats). In the future, iQuam QC will be upgraded (e.g., using improved reference field(s), with enhanced temporal and spatial resolutions). More comparisons with external QC methods will be performed to learn and employ the best QC practices.

Ocean Science ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 57-81 ◽  
Author(s):  
J.-M. Lellouche ◽  
O. Le Galloudec ◽  
M. Drévillon ◽  
C. Régnier ◽  
E. Greiner ◽  
...  

Abstract. Since December 2010, the MyOcean global analysis and forecasting system has consisted of the Mercator Océan NEMO global 1/4° configuration with a 1/12° nested model over the Atlantic and the Mediterranean. The open boundary data for the nested configuration come from the global 1/4° configuration at 20° S and 80° N. The data are assimilated by means of a reduced-order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. A 3-D-Var scheme provides a correction for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite sea surface temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. In addition to the quality control performed by data producers, the system carries out a proper quality control on temperature and salinity vertical profiles in order to minimise the risk of erroneous observed profiles being assimilated in the model. This paper describes the recent systems used by Mercator Océan and the validation procedure applied to current MyOcean systems as well as systems under development. The paper shows how refinements or adjustments to the system during the validation procedure affect its quality. Additionally, we show that quality checks (in situ, drifters) and data sources (satellite sea surface temperature) have as great an impact as the system design (model physics and assimilation parameters). The results of the scientific assessment are illustrated with diagnostics over the year 2010 mainly, assorted with time series over the 2007–2011 period. The validation procedure demonstrates the accuracy of MyOcean global products, whose quality is stable over time. All monitoring systems are close to altimetric observations with a forecast RMS difference of 7 cm. The update of the mean dynamic topography corrects local biases in the Indonesian Throughflow and in the western tropical Pacific. This improves also the subsurface currents at the Equator. The global systems give an accurate description of water masses almost everywhere. Between 0 and 500 m, departures from in situ observations rarely exceed 1 °C and 0.2 psu. The assimilation of an improved sea surface temperature product aims to better represent the sea ice concentration and the sea ice edge. The systems under development are still suffering from a drift which can only be detected by means of a 5-yr hindcast, preventing us from upgrading them in real time. This emphasizes the need to pursue research while building future systems for MyOcean2 forecasting.


2020 ◽  
Vol 12 (7) ◽  
pp. 1140
Author(s):  
Dimitrios N. Androulakis ◽  
Andrew Clive Banks ◽  
Costas Dounas ◽  
Dionissios P. Margaris

The coastal ocean is one of the most important environments on our planet, home to some of the most bio-diverse and productive ecosystems and providing key input to the livelihood of the majority of human society. It is also a highly dynamic and sensitive environment, particularly susceptible to damage from anthropogenic influences such as pollution and over-exploitation as well as the effects of climate change. These have the added potential to exacerbate other anthropogenic effects and the recent change in sea temperature can be considered as the most pervasive and severe cause of impact in coastal ecosystems worldwide. In addition to open ocean measurements, satellite observations of sea surface temperature (SST) have the potential to provide accurate synoptic coverage of this essential climate variable for the near-shore coastal ocean. However, this potential has not been fully realized, mainly because of a lack of reliable in situ validation data, and the contamination of near-shore measurements by the land. The underwater biotechnological park of Crete (UBPC) has been taking near surface temperature readings autonomously since 2014. Therefore, this study investigated the potential for this infrastructure to be used to validate SST measurements of the near-shore coastal ocean. A comparison between in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra SST data is presented for a four year (2014–2018) in situ time series recorded from the UBPC. For matchups between in situ and satellite SST data, only nighttime in situ extrapolated to the sea surface (SSTskin) data within ±1 h from the satellite’s overpass are selected and averaged. A close correlation between the in situ data and the MODIS SST was found (squared Pearson correlation coefficient-r2 > 0.9689, mean absolute error-Δ < 0.51 both for Aqua and Terra products). Moreover, close correlation was found between the satellite data and their adjacent satellite pixel’s data further from the shore (r2 > 0.9945, Δ < 0.23 for both Aqua and Terra products, daytime and nighttime satellite SST). However, there was also a consistent positive systematic difference in the satellite against satellite mean biases indicating a thermal adjacency effect from the land (e.g., mean bias between daytime Aqua satellite SST from the UBPC cell minus the respective adjacent cell’s data is δ = 0.02). Nevertheless, if improvements are made in the in situ sensors and their calibration and uncertainty evaluation, these initial results indicate that near-shore autonomous coastal underwater temperature arrays, such as the one at UBPC, could in the future provide valuable in situ data for the validation of satellite coastal SST measurements.


2007 ◽  
Vol 20 (22) ◽  
pp. 5473-5496 ◽  
Author(s):  
Richard W. Reynolds ◽  
Thomas M. Smith ◽  
Chunying Liu ◽  
Dudley B. Chelton ◽  
Kenneth S. Casey ◽  
...  

Abstract Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR–AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Bambang Sukresno ◽  
Dinarika Jatisworo ◽  
Rizki Hanintyo

Sea surface temperature (SST) is an important variable in oceanography. One of the SST data can be obtained from the Global Observation Mission-Climate (GCOM-C) satellite. Therefore, this data needs to be validated before being applied in various fields. This study aimed to validate SST data from the GCOM-C satellite in the Indonesian Seas. Validation was performed using the data of Multi-sensor Ultra-high Resolution sea surface temperature (MUR-SST) and in situ sea surface temperature Quality Monitor (iQuam). The data used are the daily GCOM-C SST dataset from January to December 2018, as well as the daily dataset from MUR-SST and iQuam in the same period. The validation process was carried out using the three-way error analysis method. The results showed that the accuracy of the GCOM-C SST was 0.37oC.


Author(s):  
M. A. Syariz ◽  
L. M. Jaelani ◽  
L. Subehi ◽  
A. Pamungkas ◽  
E. S. Koenhardono ◽  
...  

The Sea Surface Temperature (SST) retrieval from satellites data Thus, it could provide SST data for a long time. Since, the algorithms of SST estimation by using Landsat 8 Thermal Band are sitedependence, we need to develop an applicable algorithm in Indonesian water. The aim of this research was to develop SST algorithms in the North Java Island Water. The data used are in-situ data measured on April 22, 2015 and also estimated brightness temperature data from Landsat 8 Thermal Band Image (band 10 and band 11). The algorithm was established using 45 data by assessing the relation of measured in-situ data and estimated brightness temperature. Then, the algorithm was validated by using another 40 points. The results showed that the good performance of the sea surface temperature algorithm with coefficient of determination (<i>R</i><sup>2</sup>) and Root Mean Square Error (<i>RMSE</i>) of 0.912 and 0.028, respectively.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Merchant ◽  
Owen Embury ◽  
Claire E. Bulgin ◽  
Thomas Block ◽  
Gary K. Corlett ◽  
...  

Abstract A climate data record of global sea surface temperature (SST) spanning 1981–2016 has been developed from 4 × 1012 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km2 and 45 km2. The mean density of good-quality observations is 13 km−2 yr−1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr−1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics.


Sign in / Sign up

Export Citation Format

Share Document