scholarly journals A Fuzzy Logic Technique for Identifying Nonprecipitating Echoes in Radar Scans

2006 ◽  
Vol 23 (9) ◽  
pp. 1157-1180 ◽  
Author(s):  
Marc Berenguer ◽  
Daniel Sempere-Torres ◽  
Carles Corral ◽  
Rafael Sánchez-Diezma

Abstract Because echoes caused by nonmeteorological targets significantly affect radar scans, contaminated bins must be identified and eliminated before precipitation can be quantitatively estimated from radar measurements. Under mean propagation conditions, clutter echoes (mainly caused by targets such as mountains or large buildings) can be found in almost fixed locations. However, in anomalous propagation conditions, new clutter echoes may appear (sometimes over the sea), and they may be difficult to distinguish from precipitation returns. Therefore, an automatic algorithm is needed to identify clutter on radar scans, especially for operational uses of radar information (such as real-time hydrology). In this study, a new algorithm is presented based on fuzzy logic, using volumetric data. It uses some statistics to highlight clutter characteristics (namely, shallow vertical extent, high spatial variability, and low radial velocities) to output a value that quantifies the possibility of each bin being affected by clutter (in order to remove those in which this factor exceeds a certain threshold). The performance of this algorithm was compared against that of simply removing mean clutter echoes. Satisfactory results were obtained from an exhaustive evaluation of this algorithm, especially in those cases in which anomalous propagation played an important role.

Author(s):  
Moneer Ali Lilo ◽  
Maath Jasem Mahammad

This paper aims at constructing the wireless system for fault detecting and monitoring by computer depending on the wireless and fuzzy logic technique. Wireless applications are utilized to identify, classify, and monitor faults in the real time to protect machines from damage .Two schemes were tested; first scheme fault collected X-Y-Z-axes mode while the second scheme collected Y-axis mode, which is utilized to protect the induction motor (IM) from vibrations fault. The vibration signals were processed in the central computer to reduce noise by signal processing stage, and then the fault was classified and monitored based on Fuzzy Logic (FL). The wireless vibration sensor was designed depending on the wireless techniques and C++ code. A fault collection, noise reduction, vibration fault classification and monitoring were implemented by MATLAB code.  In the second scheme the processed real time was reduced to 60%, which is included collection, filtering, and monitoring fault level. Results showed that the system has the ability to early detect the fault if appears on the machine with time processing of 1.721s. This work will reduce the maintenance cost and provide the ability to utilize the system with harsh industrial applications to diagnose the fault in real time processing.


2020 ◽  
Vol 17 (9) ◽  
pp. 4500-4508
Author(s):  
H. R. Ramya ◽  
B. K. Sujatha

To tackle the cost of storage and storage space with fast-growing technologies, the image fusion is playing an important role in several image-processing areas such as medical-imaging and satelliteimaging. This fused picture is appropriate for machine perception, human visual analysis or further analysis assignment. Recently the computing method such as fuzzy logic model has been extensively used in the field of image-processing due to the uniqueness of handling uncertain modeling. The fuzzy logic based image-fusion model generally performed better with respect to other existing image fusion models. In this paper, we considered type-2 fuzzy logic, which has similar function to earlier fuzzy logic technique but consist more functionality that allows optimized management of higher degrees under uncertainty. Interval type-2 fuzzy-logic-system (IT2FLS) are widely used fuzzy sets due to their ease of use and computational simplicity. A real time image fusion (RTIF) technique that is based on the IT2FLS is used to overcome the excess computation time and nonlinear uncertainties, which is present in the medical images. In the result simulation section, we have shown that our proposed model has taken less computation time and provided better quality assessment matrices with respect to existing system.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Arpit Jain ◽  
Abhinav Sharma ◽  
Vibhu Jately ◽  
Brian Azzopardi ◽  
Sushabhan Choudhury

Sign in / Sign up

Export Citation Format

Share Document