scholarly journals Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models

2013 ◽  
Vol 141 (5) ◽  
pp. 1558-1576 ◽  
Author(s):  
He Zhang ◽  
Minghua Zhang ◽  
Qing-cun Zeng

Abstract The dynamical core of the Institute of Atmospheric Physics of the Chinese Academy of Sciences Atmospheric General Circulation Model (IAP AGCM) and the Eulerian spectral transform dynamical core of the Community Atmosphere Model, version 3.1 (CAM3.1), developed at the National Center for Atmospheric Research (NCAR) are used to study the sensitivity of simulated climate. The authors report that when the dynamical cores are used with the same CAM3.1 physical parameterizations of comparable resolutions, the model with the IAP dynamical core simulated a colder troposphere than that from the CAM3.1 core, reducing the CAM3.1 warm bias in the tropical and midlatitude troposphere. However, when the two dynamical cores are used in the idealized Held–Suarez tests without moisture physics, the IAP AGCM core simulated a warmer troposphere than that in CAM3.1. The causes of the differences in the full models and in the dry models are then investigated. The authors show that the IAP dynamical core simulated weaker eddies in both the full physics and the dry models than those in the CAM due to different numerical approximations. In the dry IAP model, the weaker eddies cause smaller heat loss from poleward dynamical transport and thus warmer troposphere in the tropics and midlatitudes. When moist physics is included, however, weaker eddies also lead to weaker transport of water vapor and reduction of high clouds in the IAP model, which then causes a colder troposphere due to reduced greenhouse warming of these clouds. These results show how interactive physical processes can change the effect of a dynamical core on climate simulations between two models.

2012 ◽  
Vol 12 (6) ◽  
pp. 13827-13880
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the modeled meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw modeled δD fields.


2012 ◽  
Vol 12 (21) ◽  
pp. 10485-10504 ◽  
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw model δD fields.


2020 ◽  
Vol 13 (2) ◽  
pp. 685-705
Author(s):  
Thomas Toniazzo ◽  
Mats Bentsen ◽  
Cheryl Craig ◽  
Brian E. Eaton ◽  
Jim Edwards ◽  
...  

Abstract. Numerical general circulation models of the atmosphere are generally required to conserve mass and energy for their application to climate studies. Here we draw attention to another conserved global integral, viz. the component of angular momentum (AM) along the Earth's axis of rotation, which tends to receive less consideration. We demonstrate the importance of global AM conservation in climate simulations with the example of the Community Atmosphere Model (CAM) with the finite-volume (FV) dynamical core, which produces a noticeable numerical sink of AM. We use a combination of mathematical analysis and numerical diagnostics to pinpoint the main source of AM non-conservation in CAM–FV. We then present a method to enforce global conservation of AM, and we discuss the results in a hierarchy of numerical simulations of the atmosphere of increasing complexity. In line with theoretical expectations, we show that even a crude, non-local enforcement of AM conservation in the simulations consistently results in the mitigation of certain persistent model biases.


2019 ◽  
Author(s):  
Thomas Toniazzo ◽  
Mats Bentsen ◽  
Cheryl Craig ◽  
Brian Eaton ◽  
James Edwards ◽  
...  

Abstract. We present a numerical method to enforce global conservation of atmospheric axial angular momentum (AM) in the Community Atmosphere Model (CAM). We discuss the results in a hierarchy of numerical simulations of the atmosphere of increasing complexity, and we demonstrate the importance of global AM conservation in climate simulations.


2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


2007 ◽  
Vol 37 (4) ◽  
pp. 896-907 ◽  
Author(s):  
Alexey Fedorov ◽  
Marcelo Barreiro ◽  
Giulio Boccaletti ◽  
Ronald Pacanowski ◽  
S. George Philander

Abstract The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.


2014 ◽  
Vol 6 (3) ◽  
pp. 902-922 ◽  
Author(s):  
Katherine J. Evans ◽  
Salil Mahajan ◽  
Marcia Branstetter ◽  
Julie L. McClean ◽  
Julie Caron ◽  
...  

2008 ◽  
Vol 1 (1) ◽  
pp. 53-68 ◽  
Author(s):  
R. S. Smith ◽  
J. M. Gregory ◽  
A. Osprey

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.


Sign in / Sign up

Export Citation Format

Share Document