scholarly journals A Tropospheric Emission Spectrometer HDO/H<sub>2</sub>O retrieval simulator for climate models

2012 ◽  
Vol 12 (21) ◽  
pp. 10485-10504 ◽  
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw model δD fields.

2012 ◽  
Vol 12 (6) ◽  
pp. 13827-13880
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the modeled meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw modeled δD fields.


2018 ◽  
Author(s):  
Lesley De Cruz ◽  
Sebastian Schubert ◽  
Jonathan Demaeyer ◽  
Valerio Lucarini ◽  
Stéphane Vannitsem

Abstract. The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase of the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate functional for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric time-scale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated to the ocean dynamics, is not fully resolved because of its associated long time scales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrization reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, it is possible to robustly define large deviations laws describing the statistics of the FTLEs corresponding to the strongly damped modes, while the opposite holds for near-zero LEs and, somewhat unexpectedly, also for the positive LEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations to the physical modes described using the formalism of the covariant Lyapunov vectors and to consider long integrations in order to disentangle the dynamical processes occurring at all time scales.


2008 ◽  
Vol 38 (9) ◽  
pp. 1894-1912 ◽  
Author(s):  
M. J. Harrison ◽  
R. W. Hallberg

Abstract Equatorial turbulent diffusivities resulting from breaking gravity waves may be more than a factor of 10 less than those in the midlatitudes. A coupled general circulation model with a layered isopycnal coordinate ocean is used to assess Pacific climate sensitivity to a latitudinally varying background diapycnal diffusivity with extremely low values near the equator. The control experiments have a minimum upper-ocean diffusivity of 10−5 m2 s−1 and are initialized from present-day conditions. The average depth of the σθ = 26.4 interface (z26.4) in the Pacific increases by ∼140 m after 500 yr of coupled model integration. This corresponds to a warming trend in the upper ocean. Low equatorial diffusivities reduce the z26.4 bias by ∼30%. Isopycnal surfaces are elevated from the eastern boundary up to midlatitudes by cooling in the upper several hundred meters, partially compensated by freshening. Entrainment of intermediate water masses from below σθ = 26.4 decreases by ∼1.5 Sv (1 Sv ≡ 106 m3 s−1), mainly in the western tropical Pacific. The Pacific heat uptake (30°S–30°N) from the atmosphere reduces by ∼0.1 PW. This is associated with warmer entrainment temperatures in the eastern equatorial Pacific upwelling region. Equatorward heat transport from the Southern Ocean increases by ∼0.07 PW. Reducing the upper-ocean background diffusivity uniformly to 10−6 m2 s−1 cools the upper ocean from the tropics, but warms and freshens from the midlatitudes. Enhanced convergence into the Pacific of water lighter than σθ = 26.4 compensates the reduction in upwelling of intermediate waters in the tropics. Basin-averaged z26.4 bias increases in the low background case. These results demonstrate basin-scale sensitivity to the observed suppression of equatorial background dissipation. This has clear implications for understanding oceanic heat uptake in the Pacific as well as other important aspects of the climate system. Diapycnal diffusivities due to truncation errors and other numerical artifacts in ocean models may need to be less than 10−6 m2 s−1 in order to accurately represent this effect in climate models.


2002 ◽  
Vol 58 (3) ◽  
pp. 296-309 ◽  
Author(s):  
Eric Barron ◽  
David Pollard

AbstractOxygen isotope stage 3 (OIS 3) climate and its variations are the focus of the Stage 3 Project. The objective of the OIS 3 modeling effort is twofold: (1) to explore the importance of different boundary conditions on the climate of Europe and (2) to develop climate simulations that best reproduce the wealth of OIS 3 observations. Given the complexity of the topography and coastlines, the modeling effort is based on a “nested” General Circulation Model (GCM) and mesoscale model (RegCM2) with climate simulations for Europe on a 60-km grid spacing. The key conclusions are as follows: (1) The mesoscale model, driven by GCM output, does a reasonable job of reproducing the modern European climate. (2) OIS 3 variations in orbit, CO2, and ice-sheet size are of little significance in explaining the observed climate variability. (3) The model results focus attention on North Atlantic sea-surface temperatures (SST) as a major factor in explaining OIS 3 climates. (4) Experiments for different SST values capture a number of systematic changes in sea-level pressure and precipitation. (5) Climate models simulate substantial European cooling and significant changes in precipitation, but they do not explain large differences between OIS 3 warm and cold episodes.


2013 ◽  
Vol 141 (5) ◽  
pp. 1558-1576 ◽  
Author(s):  
He Zhang ◽  
Minghua Zhang ◽  
Qing-cun Zeng

Abstract The dynamical core of the Institute of Atmospheric Physics of the Chinese Academy of Sciences Atmospheric General Circulation Model (IAP AGCM) and the Eulerian spectral transform dynamical core of the Community Atmosphere Model, version 3.1 (CAM3.1), developed at the National Center for Atmospheric Research (NCAR) are used to study the sensitivity of simulated climate. The authors report that when the dynamical cores are used with the same CAM3.1 physical parameterizations of comparable resolutions, the model with the IAP dynamical core simulated a colder troposphere than that from the CAM3.1 core, reducing the CAM3.1 warm bias in the tropical and midlatitude troposphere. However, when the two dynamical cores are used in the idealized Held–Suarez tests without moisture physics, the IAP AGCM core simulated a warmer troposphere than that in CAM3.1. The causes of the differences in the full models and in the dry models are then investigated. The authors show that the IAP dynamical core simulated weaker eddies in both the full physics and the dry models than those in the CAM due to different numerical approximations. In the dry IAP model, the weaker eddies cause smaller heat loss from poleward dynamical transport and thus warmer troposphere in the tropics and midlatitudes. When moist physics is included, however, weaker eddies also lead to weaker transport of water vapor and reduction of high clouds in the IAP model, which then causes a colder troposphere due to reduced greenhouse warming of these clouds. These results show how interactive physical processes can change the effect of a dynamical core on climate simulations between two models.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2012 ◽  
Vol 93 (8) ◽  
pp. 1171-1187 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Duane E. Waliser ◽  
Martin J. Miller ◽  
Melvyn A. Shapiro ◽  
Ghassem R. Asrar ◽  
...  

The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1–100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden–Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2011 ◽  
Vol 4 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
W.-L. Chan ◽  
A. Abe-Ouchi ◽  
R. Ohgaito

Abstract. Recently, PlioMIP (Pliocene Model Intercomparison Project) was established to assess the ability of various climate models to simulate the mid-Pliocene warm period (mPWP), 3.3–3.0 million years ago. We use MIROC4m, a fully coupled atmosphere-ocean general circulation model (AOGCM), and its atmospheric component alone to simulate the mPWP, utilizing up-to-date data sets designated in PlioMIP as boundary conditions and adhering to the protocols outlined. In this paper, a brief description of the model is given, followed by an explanation of the experimental design and implementation of the boundary conditions, such as topography and sea surface temperature. Initial results show increases of approximately 10°C in the zonal mean surface air temperature at high latitudes accompanied by a decrease in the equator-to-pole temperature gradient. Temperatures in the tropical regions increase more in the AOGCM. However, warming of the AOGCM sea surface in parts of the northern North Atlantic Ocean and Nordic Seas is less than that suggested by proxy data. An investigation of the model-data discrepancies and further model intercomparison studies can lead to a better understanding of the mid-Pliocene climate and of its role in assessing future climate change.


2016 ◽  
Vol 16 (23) ◽  
pp. 15413-15424 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Yousuke Sato ◽  
Toshihiko Takemura

Abstract. Aerosol–cloud interactions are one of the most uncertain processes in climate models due to their nonlinear complexity. A key complexity arises from the possibility that clouds can respond to perturbed aerosols in two opposite ways, as characterized by the traditional “cloud lifetime” hypothesis and more recent “buffered system” hypothesis. Their importance in climate simulations remains poorly understood. Here we investigate the response of the liquid water path (LWP) to aerosol perturbations for warm clouds from the perspective of general circulation model (GCM) and A-Train remote sensing, through process-oriented model evaluations. A systematic difference is found in the LWP response between the model results and observations. The model results indicate a near-global uniform increase of LWP with increasing aerosol loading, while the sign of the response of the LWP from the A-Train varies from region to region. The satellite-observed response of the LWP is closely related to meteorological and/or macrophysical factors, in addition to the microphysics. The model does not reproduce this variability of cloud susceptibility (i.e., sensitivity of LWP to perturbed aerosols) because the parameterization of the autoconversion process assumes only suppression of rain formation in response to increased cloud droplet number, and does not consider macrophysical aspects that serve as a mechanism for the negative responses of the LWP via enhancements of evaporation and precipitation. Model biases are also found in the precipitation microphysics, which suggests that the model generates rainwater readily even when little cloud water is present. This essentially causes projections of unrealistically frequent and light rain, with high cloud susceptibilities to aerosol perturbations.


Sign in / Sign up

Export Citation Format

Share Document