scholarly journals Higher Resolution in an Operational Ensemble Kalman Filter

2014 ◽  
Vol 142 (3) ◽  
pp. 1143-1162 ◽  
Author(s):  
P. L. Houtekamer ◽  
Xingxiu Deng ◽  
Herschel L. Mitchell ◽  
Seung-Jong Baek ◽  
Normand Gagnon

Abstract Recently, the computing facilities available to the Meteorological Service of Canada were significantly upgraded. This provided an opportunity to improve the resolution of the global ensemble Kalman filter (EnKF) and the medium-range Global Ensemble Prediction System (GEPS). In the EnKF, the main upgrades include improved horizontal, vertical, and temporal resolution. With the introduction of the higher horizontal resolution, it was decided to use a filtered topography in order to address an occasional instability problem. At the same time, the number of assimilated radiance observations was increased via a relaxation of the data-thinning procedures. In the medium-range GEPS, which already used the higher horizontal resolution, the filtered topography was also adopted. Likewise, the temporal resolution was increased to be the same as in the short-range integrations of the EnKF. With these changes, the grid used by the Canadian EnKF has 600 × 300 points in the horizontal and 74 vertical levels. The forecast model uses a 20-min time step and, for time interpolation of the model trajectories, model states are stored every hour. The EnKF uses an ensemble having 192 members. This paper sequentially examines the impact of these implemented changes. The upgraded EnKF became operational at the Canadian Meteorological Centre in mid-February 2013.

2009 ◽  
Vol 137 (7) ◽  
pp. 2126-2143 ◽  
Author(s):  
P. L. Houtekamer ◽  
Herschel L. Mitchell ◽  
Xingxiu Deng

Since 12 January 2005, an ensemble Kalman filter (EnKF) has been used operationally at the Meteorological Service of Canada to provide the initial conditions for the medium-range forecasts of the ensemble prediction system. One issue in EnKF development is how to best account for model error. It is shown that in a perfect-model environment, without any model error or model error simulation, the EnKF spread remains representative of the ensemble mean error with respect to a truth integration. Consequently, the EnKF can be used to quantify the impact of the various error sources in a data-assimilation cycle on the quality of the ensemble mean. Using real rather than simulated observations, but still not simulating model error in any manner, the rms ensemble spread is found to be too small by approximately a factor of 2. It is then attempted to account for model error by using various combinations of the following four different approaches: (i) additive isotropic model error perturbations; (ii) different versions of the model for different ensemble members; (iii) stochastic perturbations to physical tendencies; and (iv) stochastic kinetic energy backscatter. The addition of isotropic model error perturbations is found to have the biggest impact. The identification of model error sources could lead to a more realistic, likely anisotropic, parameterization. Using different versions of the model has a small but clearly positive impact and consequently both (i) and (ii) are used in the operational EnKF. The use of approaches (iii) and (iv) did not lead to further improvements.


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2017 ◽  
Vol 32 (3) ◽  
pp. 1185-1208 ◽  
Author(s):  
Phillipa Cookson-Hills ◽  
Daniel J. Kirshbaum ◽  
Madalina Surcel ◽  
Jonathan G. Doyle ◽  
Luc Fillion ◽  
...  

Abstract Environment and Climate Change Canada (ECCC) has recently developed an experimental high-resolution EnKF (HREnKF) regional ensemble prediction system, which it tested over the Pacific Northwest of North America for the first half of February 2011. The HREnKF has 2.5-km horizontal grid spacing and assimilates surface and upper-air observations every hour. To determine the benefits of the HREnKF over less expensive alternatives, its 24-h quantitative precipitation forecasts are compared with those from a lower-resolution (15 km) regional ensemble Kalman filter (REnKF) system and to ensembles directly downscaled from the REnKF using the same grid as the HREnKF but with no additional data assimilation (DS). The forecasts are verified against rain gauge observations and gridded precipitation analyses, the latter of which are characterized by uncertainties of comparable magnitude to the model forecast errors. Nonetheless, both deterministic and probabilistic verification indicates robust improvements in forecast skill owing to the finer grids of the HREnKF and DS. The HREnKF exhibits a further improvement in performance over the DS in the first few forecast hours, suggesting a modest positive impact of data assimilation. However, this improvement is not statistically significant and may be attributable to other factors.


2006 ◽  
Vol 13 (1) ◽  
pp. 53-66 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
M. Colacino ◽  
R. L. Walko

Abstract. This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.


2010 ◽  
Vol 138 (5) ◽  
pp. 1877-1901 ◽  
Author(s):  
Martin Charron ◽  
Gérard Pellerin ◽  
Lubos Spacek ◽  
P. L. Houtekamer ◽  
Normand Gagnon ◽  
...  

Abstract An updated global ensemble prediction system became operational at the Meteorological Service of Canada in July 2007. The new elements of the system include the use of 20 members instead of 16, a single dynamical core [the Global Environmental Multiscale (GEM) model], stochastic physical tendency perturbations and a kinetic energy backscatter algorithm, an ensemble Kalman filter with four-dimensional data handling, and a decrease from 1.2° to 0.9° in horizontal grid spacing. This system is compared with the former operational one using a variety of probabilistic measures. For global upper-air dynamical fields, the improvement in predictive skill for equivalent forecast quality is from 9 to 16 h around day 6. Precipitation forecasts, verified over Canada, are also significantly improved. The impact of each of the abovementioned new elements of the ensemble prediction system is also evaluated separately in a series of sensitivity experiments for which one given element is removed from the system.


2017 ◽  
Vol 145 (5) ◽  
pp. 1919-1935 ◽  
Author(s):  
Lisa Bengtsson ◽  
Ulf Andrae ◽  
Trygve Aspelien ◽  
Yurii Batrak ◽  
Javier Calvo ◽  
...  

Abstract The aim of this article is to describe the reference configuration of the convection-permitting numerical weather prediction (NWP) model HARMONIE-AROME, which is used for operational short-range weather forecasts in Denmark, Estonia, Finland, Iceland, Ireland, Lithuania, the Netherlands, Norway, Spain, and Sweden. It is developed, maintained, and validated as part of the shared ALADIN–HIRLAM system by a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale NWP. HARMONIE–AROME is based on the model AROME developed within the ALADIN consortium. Along with the joint modeling framework, AROME was implemented and utilized in both northern and southern European conditions by the above listed countries, and this activity has led to extensive updates to the model’s physical parameterizations. In this paper the authors present the differences in model dynamics and physical parameterizations compared with AROME, as well as important configuration choices of the reference, such as lateral boundary conditions, model levels, horizontal resolution, model time step, as well as topography, physiography, and aerosol databases used. Separate documentation will be provided for the atmospheric and surface data-assimilation algorithms and observation types used, as well as a separate description of the ensemble prediction system based on HARMONIE–AROME, which is called HarmonEPS.


2006 ◽  
Vol 7 ◽  
pp. 1-8 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
M. Colacino

Abstract. This paper reports preliminary results of a Limited area model Ensemble Prediction System (LEPS), based on RAMS, for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time, in order to implement LEPS operational, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that forms the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12 km horizontal resolution. Hereafter this ensemble will be referred also as LEPS_12L30. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecast, LEPS_12L30 forecasts are compared to a lower resolution ensemble, based on RAMS that has 50 km horizontal resolution and 51 members, nested in each ECMWF-EPS member. Hereafter this ensemble will be also referred as LEPS_50L30. LEPS_12L30 and LEPS_50L30 results were compared subjectively for all case studies but, for brevity, results are reported for two "representative" cases only. Subjective analysis is based on ensemble-mean precipitation and probability maps. Moreover, a short summary of objective scores. Maps and scores are evaluated against reports of Calabria regional raingauges network. Results show better LEPS_12L30 performance compared to LEPS_50L30. This is obtained for all case studies selected and strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria, at least for set-ups and case studies selected in this work.


2015 ◽  
Vol 30 (5) ◽  
pp. 1158-1181 ◽  
Author(s):  
Craig S. Schwartz ◽  
Glen S. Romine ◽  
Morris L. Weisman ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell ◽  
...  

Abstract In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.


2010 ◽  
Vol 138 (5) ◽  
pp. 1550-1566 ◽  
Author(s):  
Mark Buehner ◽  
P. L. Houtekamer ◽  
Cecilien Charette ◽  
Herschel L. Mitchell ◽  
Bin He

Abstract An intercomparison of the Environment Canada variational and ensemble Kalman filter (EnKF) data assimilation systems is presented in the context of global deterministic NWP. In an EnKF experiment having the same spatial resolution as the inner loop in the four-dimensional variational data assimilation system (4D-Var), the mean of each analysis ensemble is used to initialize the higher-resolution deterministic forecasts. Five different variational data assimilation experiments are also conducted. These include both 4D-Var and 3D-Var (with first guess at appropriate time) experiments using either (i) prescribed background-error covariances similar to those used operationally, which are static in time and include horizontally homogeneous and isotropic correlations; or (ii) flow-dependent covariances computed from the EnKF background ensembles with spatial covariance localization applied. The fifth variational data assimilation experiment is a new approach called the Ensemble-4D-Var (En-4D-Var). This approach uses 4D flow-dependent background-error covariances estimated from EnKF ensembles to produce a 4D analysis without the need for tangent-linear or adjoint versions of the forecast model. In this first part of a two-part paper, results from a series of idealized assimilation experiments are presented. In these experiments, only a single observation or vertical profile of observations is assimilated to explore the impact of various fundamental differences among the EnKF and the various variational data assimilation approaches considered. In particular, differences in the application of covariance localization in the EnKF and variational approaches are shown to have a significant impact on the assimilation of satellite radiance observations. The results also demonstrate that 4D-Var and the EnKF can both produce similar 4D background-error covariances within a 6-h assimilation window. In the second part, results from medium-range deterministic forecasts for the study period of February 2007 are presented for the EnKF and the five variational data assimilation approaches considered.


Sign in / Sign up

Export Citation Format

Share Document