scholarly journals Enhanced Tropospheric Wave Forcing of Two Anticyclones in the Prephase of the January 2009 Major Stratospheric Sudden Warming Event

2017 ◽  
Vol 145 (5) ◽  
pp. 1797-1815 ◽  
Author(s):  
Andrea Schneidereit ◽  
Dieter H. W. Peters ◽  
Christian M. Grams ◽  
Julian F. Quinting ◽  
Julia H. Keller ◽  
...  

Abstract Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden warming event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen–Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest eddy heat fluxes, associated with wavenumber 2, occur at 100 hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the cold phase of ENSO (La Niña) contribute to the eddy heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden–Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing eddy activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated warm conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of eddy kinetic energy. The MSSW 2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multiscale interactions enhances tropospheric forcing for wavenumber 2–induced zonal mean eddy heat flux in the lower stratosphere.

2011 ◽  
Vol 11 (22) ◽  
pp. 11447-11453 ◽  
Author(s):  
M. M. Hurwitz ◽  
P. A. Newman ◽  
C. I. Garfinkel

Abstract. Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in the polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Niña conditions and the westerly phase of the quasi-biennial oscillation (QBO) were observed in March 2011. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist through March. Therefore, the La Niña and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, positive sea surface temperature anomalies in the North Pacific may have contributed to the unusually weak tropospheric wave driving and strong Arctic vortex in late winter 2011.


2007 ◽  
Vol 24 (5) ◽  
pp. 923-934 ◽  
Author(s):  
Brian S. Chinn ◽  
Sarah T. Gille

Abstract Acoustically tracked float data from 16 experiments carried out in the North Atlantic are used to evaluate the feasibility of estimating eddy heat fluxes from floats. Daily float observations were bin averaged in 2° by 2° by 200-db-deep geographic bins, and eddy heat fluxes were estimated for each bin. Results suggest that eddy heat fluxes can be highly variable, with substantial outliers that mean that fluxes do not converge quickly. If 100 statistically independent observations are available in each bin (corresponding to 500–1000 float days of data), then results predict that 80% of bins will have eddy heat fluxes that are statistically different from zero. Pop-up floats, such as Autonomous Lagrangian Circulation Explorer (ALACE) and Argo floats, do not provide daily sampling and therefore underestimate eddy heat flux. The fraction of eddy heat flux resolved using pop-up float sampling patterns decreases linearly with increasing intervals between float mapping and can be modeled analytically. This implies that flux estimates from pop-up floats may be correctable to represent true eddy heat flux.


2011 ◽  
Vol 11 (8) ◽  
pp. 22113-22127 ◽  
Author(s):  
M. M. Hurwitz ◽  
P. A. Newman ◽  
C. I. Garfinkel

Abstract. Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in the polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Niña conditions and the westerly phase of the quasi-biennial oscillation (QBO) were observed in March 2011. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist through March. Therefore, the La Niña and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, positive sea surface temperature anomalies in the North Pacific may have contributed to the unusually weak tropospheric wave driving and strong Arctic vortex in late winter 2011.


2006 ◽  
Vol 19 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Masakazu Taguchi ◽  
Dennis L. Hartmann

Abstract Experiments with Whole Atmosphere Community Climate Model (WACCM) under perpetual January conditions indicate that stratospheric sudden warmings (SSWs) are twice as likely to occur in El Niño winters than in La Niña winters, in basic agreement with the limited observational dataset. Tropical SST anomalies that mimic El Niño and La Niña lead to changes in the shape of probability distribution functions (PDFs) of stratospheric day-to-day variability, resulting in a warmer pole and weaker vortex on average for El Niño conditions. The tropical SST forcing induces a response similar to the observed response in the enhancement of the planetary wave of zonal wavenumber 1 (wave 1) and the weakening of wave 2 in the upper troposphere and stratosphere of high latitudes. The enhanced wave 1 contributes to a shift of the PDFs of poleward eddy heat flux in the lower stratosphere, or wave forcing entering the stratosphere. The shift of the PDFs includes an increase of strong wave events that induce more frequent SSWs.


2008 ◽  
Vol 21 (2) ◽  
pp. 342-363 ◽  
Author(s):  
Motoki Nagura ◽  
Kentaro Ando ◽  
Keisuke Mizuno

Abstract The heat balance of the surface mixed layer is analyzed at the eastern equatorial Pacific Ocean (0°, 140°W) in order to examine the transition from the 1998 La Niña to the 2002 El Niño. The data used are observations from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON). Results show that interannual variation of eddy heat flux due to tropical instability waves slows the transition from La Niña to El Niño. Previous studies have described this slow transition as a pausing period of the ENSO cycle; that is, La Niña lingers and El Niño does not immediately appear despite a deepened thermocline. Heat balance analysis shows that the vertical heat advection anomaly and surface heat flux anomaly warm the mixed layer from 1999 to 2002. These warming anomalies cause the rise of the mixed layer temperature anomaly in the transition from La Niña to El Niño. In contrast, a cooling anomaly of the horizontal heat advection reduces the warming anomaly and slows down the transition from La Niña to El Niño. In horizontal heat advection terms, the eddy heat flux anomaly significantly contributes to the cooling anomaly associated with weakened variability in the 14–50-day-period band, that is, weakened tropical instability waves. During the transition from La Niña to El Niño, the meridional shear between the South Equatorial Current (SEC) and North Equatorial Counter Current is weakened because of the eastward current anomaly at the equator (i.e., weakened SEC) associated with relaxing trade winds. Weakened shear would suppress tropical instability waves. The results presented here suggest that the synoptic-scale processes work effectively at the basin scale to slow down the transition from La Niña to El Niño.


2021 ◽  
Author(s):  
Dong Xiao ◽  
Hongli Ren

AbstractArctic amplification refers to the greater surface warming of the Arctic than of other regions during recent decades. A similar phenomenon occurs in the troposphere and is termed “tropospheric Arctic amplification” (TAA). The poleward eddy heat flux and eddy moisture flux are critical to Arctic warming. In this study, we investigate the synoptic transient eddy activity over the North Pacific associated with TAA and its relationship with the subtropical jet stream, and propose the following mechanism. A poleward shift of the subtropical jet axis results in anomalies of the meridional gradient of zonal wind over the North Pacific, which drive a meridional dipole pattern of synoptic transient wave intensity over the North Pacific, referred to as the North Pacific Synoptic Transient wave intensity Dipole (NPSTD). The NPSTD index underwent an interdecadal shift in the late 1990s accompanying that of the subtropical jet stream. During the positive phase of the NPSTD index, synoptic eddy heat flux transports more heat to the Arctic Circle, and the eddy heat flux diverges, increasing Arctic temperature. This mechanism highlights the need to consider synoptic transient eddy activity over the North Pacific as the link between the mean state of the North Pacific subtropical upper jet and TAA.


2021 ◽  
Author(s):  
Hyung-Ju Park ◽  
Kwang-Yul Kim

AbstractEffect of global warming on the sub-seasonal variability of the Northern Hemispheric winter (NDJFM) Pacific storm-track (PST) activity has been investigated. Previous studies showed that the winter-averaged PST has shifted northward and intensified, which was explained in terms of energy exchange with the mean field. Effect of global warming exhibits spatio-temporal heterogeneity with predominance over the Arctic region and in the winter season. Therefore, seasonal averaging may hide important features on sub-seasonal scales. In this study, distinct sub-seasonal response in storm track activities to winter Northern Hemispheric warming is analyzed applying cyclostationary empirical orthogonal function analysis to ERA5 data. The key findings are as follows. Change in the PST is not uniform throughout the winter; the PST shifts northward in early winter (NDJ) and intensifies in late winter (FM). In early winter, the combined effect of weakened baroclinic process to the south of the climatological PST and weakened barotropic damping to the north is responsible for the northward shift. In late winter, both processes contribute to the amplification of the PST. Further, change in baroclinic energy conversion is quantitatively dominated by eddy heat flux, whereas axial tilting of eddies is primarily responsible for change in barotropic energy conversion. A close relationship between anomalous eddy heat flux and anomalous boundary heating, which is largely determined by surface turbulent heat flux, is also demonstrated.


2004 ◽  
Vol 17 (22) ◽  
pp. 4443-4452 ◽  
Author(s):  
Alexei Karpetchko ◽  
Grigory Nikulin

Abstract Using NCEP–NCAR reanalysis data the authors show that the November–December averaged stratospheric eddy heat flux is strongly anticorrelated with the January–February averaged eddy heat flux in the midlatitude stratosphere and troposphere. This finding further emphasizes differences between early and midwinter stratospheric wave flux behavior, which has recently been found in long-term variations. Analysis suggests that the intraseasonal anticorrelation of stratospheric heat fluxes results from changes in the upward wave propagation in the troposphere. Stronger (weaker) upward wave fluxes in early winter lead to weaker (stronger) upward wave fluxes from the troposphere during midwinter. Also, enhanced equatorward wave refraction during midwinter (due to the stronger polar night jet) is associated with weak heat flux in the early winter. It is suggested that the effect of enhanced midwinter upward wave flux from the troposphere in the years with weak early winter heat flux overcompensates the effect of increased equatorward wave refraction in midwinter, leading to a net increase of midwinter upward wave fluxes into the stratosphere.


2005 ◽  
Vol 5 (3) ◽  
pp. 4223-4256
Author(s):  
G. Nikulin ◽  
A. Karpechko

Abstract. The development of wintertime ozone buildup over the Northern Hemisphere (NH) midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002). The ozone buildup begins locally in October with positive ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. During October–January a longitudinal distribution of the ozone tendencies mirrors a structure of quasi-stationary planetary waves in the lower stratosphere and has less similarity with this structure in February–March when chemistry begins to play a more important role. From November to March, zonal mean ozone tendencies (50°–60° N) show strong correlation (|r|=0.7) with different parameters used as proxies of the mean meridional circulation, namely: eddy heat flux, the vertical residual velocity (diabatically-derived) and temperature tendency. The correlation patterns between ozone tendency and the vertical residual velocity or temperature tendency are more homogeneous from month to month than ones for eddy heat flux. A partial exception is December when correlation is strong only for the vertical residual velocity. In October zonal mean ozone tendencies have no coupling with the proxies. However, positive tendencies averaged over the North Pacific correlate well, with all of them suggesting that intensification of northward ozone transport starts locally over the Pacific already in October. We show that the NH midlatitude ozone buildup has stable statistical relation with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.


2021 ◽  
Vol 2 (2) ◽  
pp. 395-412
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of tropical Pacific sea surface temperature (SST) variability on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 d band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean SST over the tropical Pacific. We find that the El Niño–Southern Oscillation (ENSO) explains a dominant fraction of the year-to-year changes in subseasonal SAT variability that are covarying with SST and thus likely more predictable. In agreement with previous studies, we find a tendency for La Niña conditions to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion during La Niña. Structural changes of these eddies are crucial to enhance the efficiency of the energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The enhanced likelihood of cold extremes over western North America is associated with both an increased subseasonal SAT variability and the cold winter-mean response to La Niña.


Sign in / Sign up

Export Citation Format

Share Document