scholarly journals The Relation between Nocturnal MCS Evolution and Its Outflow Boundaries in the Stable Boundary Layer: An Observational Study of the 15 July 2015 MCS in PECAN

2018 ◽  
Vol 146 (10) ◽  
pp. 3203-3226 ◽  
Author(s):  
Coltin Grasmick ◽  
Bart Geerts ◽  
David D. Turner ◽  
Zhien Wang ◽  
T. M. Weckwerth

Abstract The vertical structures of a leading outflow boundary ahead of a continental nocturnal MCS and of the upstream environment are examined in order to answer the question of whether this vertical structure affects new cell formation and thus MCS maintenance. The MCS in question, observed on 15 July 2015 as part of the Plains Elevated Convection at Night (PECAN) experiment, formed near sunset as a surface-based, density current–driven system. As the night progressed and a stable boundary layer developed, convection became elevated, multiple fine lines became apparent (indicative of an undular bore), and convection increasingly lagged the outflow boundary. Bore-like boundaries became most apparent where the outflow boundary was oriented more perpendicular to the low-level jet, and the lower troposphere was more susceptible to wave trapping. This case study uses a rich array of radiosonde data, as well as airborne Raman lidar and ground-based interferometer data, to profile the temperature and humidity in the lower troposphere. In all soundings, the lifting of air in the residual mixed layer over a depth corresponding to the Raman lidar observed vertical displacement reduced CIN to near zero and enabled deep convection, even though most unstable CAPE steadily decreased during the evolution of this MCS. Both types of outflow boundaries (density currents and bores) initiated convection that helped maintain the MCS. In the case of density currents, cold pool depth and wind shear determined new cell formation and thus MCS maintenance. For bore-like boundaries, bore transformation and propagation were additional factors that determined whether convection initiated and whether it contributed to the MCS or remained separated.

2019 ◽  
Vol 147 (9) ◽  
pp. 3169-3189 ◽  
Author(s):  
Guo Lin ◽  
Bart Geerts ◽  
Zhien Wang ◽  
Coltin Grasmick ◽  
Xiaoqin Jing ◽  
...  

Abstract Small-scale variations within the low-level outflow and inflow of an MCS can either support or deter the upscale growth and maintenance of the MCS. However, these small-scale variations, in particular in the thermodynamics (temperature and humidity), remain poorly understood, due to a lack of detailed measurements. The compact Raman lidar (CRL) deployed on the University of Wyoming King Air aircraft directly sampled temperature and water vapor profiles at unprecedented vertical and along-track resolutions along the southern margin of a series of mature nocturnal MCSs traveling along a frontal boundary on 1 July 2015 during the Plains Elevated Convection at Night (PECAN) campaign. Here, the capability of the airborne CRL to document interactions between the MCS inflow and outflow currents is illustrated. The CRL reveals the well-defined boundary of a cooler current. This is interpreted as the frontal boundary sharpened by convectively induced cold pools, in particular by the outflow boundary of the downstream MCS. In one CRL transect, the frontal/outflow boundary appeared as a distinct two-layer structure of moisture and aerosols formed by moist stable boundary layer air advected above the boundary. The second transect, one hour later, reveals a single sloping boundary. In both cases, the lofting of the moist stably stratified air over the boundary favors MCS maintenance, through enhanced elevated CAPE and reduced CIN. The CRL data are sufficiently resolved to reveal Kelvin–Helmholtz (KH) billows and the vertical structure of the outflow boundary, which in this case behaved as a density current rather than an undular bore.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractSubmesoscale motions within the stable boundary layer were detected during the Shallow Cold Pool Experiment conducted in the Colorado plains, Colorado, U.S.A. in 2012. The submesoscale motion consisted of two air layers creating a well-defined front with a sharp temperature gradient, and further-on referred to as a thermal submesofront (TSF). The semi-stationary TSFs and their advective velocities are detected and determined by the fibre-optic distributed-sensing (FODS) technique. An objective detection algorithm utilizing FODS measurements is able to detect the TSF boundary, which enables a detailed investigation of its spatio–temporal statistics. The novel approach in data processing is to conditionally average any parameter depending on the distance between a TSF boundary and the measurement location. By doing this, a spatially-distributed feature like TSFs can be characterized by point observations and processes at the TSF boundary can be investigated. At the TSF boundary, the air layers converge, creating an updraft, strong static stability, and vigorous mixing. Further, the TSF advective velocity of TSFs is an order of magnitude lower than the mean wind speed. Despite being gentle, the topography plays an important role in TSF formation. Details on generating mechanisms and implications of TSFs on the stable boundary layer are discussed in Part 2.


2007 ◽  
Vol 64 (9) ◽  
pp. 3068-3090 ◽  
Author(s):  
Robert M. Banta ◽  
Larry Mahrt ◽  
Dean Vickers ◽  
Jielun Sun ◽  
Ben B. Balsley ◽  
...  

Abstract The light-wind, clear-sky, very stable boundary layer (vSBL) is characterized by large values of bulk Richardson number. The light winds produce weak shear, turbulence, and mixing, and resulting strong temperature gradients near the surface. Here five nights with weak-wind, very stable boundary layers during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) are investigated. Although the winds were light and variable near the surface, Doppler lidar profiles of wind speed often indicated persistent profile shapes and magnitudes for periods of an hour or more, sometimes exhibiting jetlike maxima. The near-surface structure of the boundary layer (BL) on the five nights all showed characteristics typical of the vSBL. These characteristics included a shallow traditional BL only 10–30 m deep with weak intermittent turbulence within the strong surface-based radiation inversion. Above this shallow BL sat a layer of very weak turbulence and negligible turbulent mixing. The focus of this paper is on the effects of this quiescent layer just above the shallow BL, and the impacts of this quiescent layer on turbulent transport and numerical modeling. High-frequency time series of temperature T on a 60-m tower showed that 1) the amplitudes of the T fluctuations were dramatically suppressed at levels above 30 m in contrast to the relatively larger intermittent T fluctuations in the shallow BL below, and 2) the temperature at 40- to 60-m height was nearly constant for several hours, indicating that the very cold air near the surface was not being mixed upward to those levels. The presence of this quiescent layer indicates that the atmosphere above the shallow BL was isolated and detached both from the surface and from the shallow BL. Although some of the nights studied had modestly stronger winds and traveling disturbances (density currents, gravity waves, shear instabilities), these disturbances seemed to pass through the region without having much effect on either the SBL structure or on the atmosphere–surface decoupling. The decoupling suggests that under very stable conditions, the surface-layer lower boundary condition for numerical weather prediction models should act to decouple and isolate the surface from the atmosphere, for example, as a free-slip, thermally insulated layer. A multiday time series of ozone from an air quality campaign in Tennessee, which exhibited nocturnal behavior typical of polluted air, showed the disappearance of ozone on weak low-level jets (LLJ) nights. This behavior is consistent with the two-stratum structure of the vSBL, and with the nearly complete isolation of the surface and the shallow BL from the rest of the atmosphere above, in contrast to cases with stronger LLJs, where such coupling was stronger.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


2000 ◽  
Vol 97 (1) ◽  
pp. 1-24 ◽  
Author(s):  
J. J. Holden ◽  
S. H. Derbyshire ◽  
S. E. Belcher

Sign in / Sign up

Export Citation Format

Share Document