The Multigrid Beta Function Approach for Modeling of Background Error Covariance in the Real-Time Mesoscale Analysis (RTMA)

Abstract We describe a method for the efficient generation of the covariance operators of a variational data assimilation scheme which is suited to implementation on a massively parallel computer. The elementary components of this scheme are what we call ‘beta filters’, since they are based on the same spatial profiles possessed by the symmetric beta distributions of probability theory. These approximately Gaussian (bell-shaped) polynomials blend smoothly to zero at the ends of finite intervals, which makes them better suited to parallelization than the present quasi-Gaussian ‘recursive filters’ used in operations at NCEP. These basic elements are further combined at a hierarchy of different spatial scales into an overall multigrid structure formulated to preserve the necessary self-adjoint attribute possessed by any valid covariance operator. This paper describes the underlying idea of the beta filter and discusses how generalized Helmholtz operators can be enlisted to weight the elementary contributions additively in such a way that the covariance operators may exhibit realistic negative sidelobes, which are not easily obtained through the recursive filter paradigm. The main focus of the paper is on the basic logistics of the multigrid structure by which more general covariance forms are synthesized from the basic quasi-Gaussian elements. We describe several ideas on how best to organize computation, which led us to a generalization of this structure which made it practical so that it can efficiently perform with any rectangular arrangement of processing elements. Some simple idealized examples of the applications of these ideas are given.

2010 ◽  
Vol 138 (6) ◽  
pp. 2229-2252 ◽  
Author(s):  
Yann Michel ◽  
Thomas Auligné

Abstract The structure of the analysis increments in a variational data assimilation scheme is strongly driven by the formulation of the background error covariance matrix, especially in data-sparse areas such as the Antarctic region. The gridpoint background error modeling in this study makes use of regression-based balance operators between variables, empirical orthogonal function decomposition to define the vertical correlations, gridpoint variances, and high-order efficient recursive filters to impose horizontal correlations. A particularity is that the regression operators and the recursive filters have been made spatially inhomogeneous. The computation of the background error statistics is performed with the Weather Research and Forecast (WRF) model from a set of forecast differences. The mesoscale limited-area domains of interest cover Antarctica. Inhomogeneities of background errors are shown to be related to the particular orography and physics of the area. Differences seem particularly pronounced between ocean and land boundary layers.


2018 ◽  
Vol 146 (5) ◽  
pp. 1367-1381 ◽  
Author(s):  
Jean-François Caron ◽  
Mark Buehner

Abstract Scale-dependent localization (SDL) consists of applying the appropriate (i.e., different) amount of localization to different ranges of background error covariance spatial scales while simultaneously assimilating all of the available observations. The SDL method proposed by Buehner and Shlyaeva for ensemble–variational (EnVar) data assimilation was tested in a 3D-EnVar version of the Canadian operational global data assimilation system. It is shown that a horizontal-scale-dependent horizontal localization leads to implicit vertical-level-dependent, variable-dependent, and location-dependent horizontal localization. The results from data assimilation cycles show that horizontal-scale-dependent horizontal covariance localization is able to improve the forecasts up to day 5 in the Northern Hemisphere extratropical summer period and up to day 7 in the Southern Hemisphere extratropical winter period. In the tropics, use of SDL results in improvements similar to what can be obtained by increasing the uniform amount of spatial localization. An investigation of the dynamical balance in the resulting analysis increments demonstrates that SDL does not further harm the balance between the mass and the rotational wind fields, as compared to the traditional localization approach. Potential future applications for the SDL method are also discussed.


2015 ◽  
Vol 143 (9) ◽  
pp. 3804-3822 ◽  
Author(s):  
Zhijin Li ◽  
James C. McWilliams ◽  
Kayo Ide ◽  
John D. Farrara

Abstract A multiscale data assimilation (MS-DA) scheme is formulated for fine-resolution models. A decomposition of the cost function is derived for a set of distinct spatial scales. The decomposed cost function allows for the background error covariance to be estimated separately for the distinct spatial scales, and multi-decorrelation scales to be explicitly incorporated in the background error covariance. MS-DA minimizes the partitioned cost functions sequentially from large to small scales. The multi-decorrelation length scale background error covariance enhances the spreading of sparse observations and prevents fine structures in high-resolution observations from being overly smoothed. The decomposition of the cost function also provides an avenue for mitigating the effects of scale aliasing and representativeness errors that inherently exist in a multiscale system, thus further improving the effectiveness of the assimilation of high-resolution observations. A set of one-dimensional experiments is performed to examine the properties of the MS-DA scheme. Emphasis is placed on the assimilation of patchy high-resolution observations representing radar and satellite measurements, alongside sparse observations representing those from conventional in situ platforms. The results illustrate how MS-DA improves the effectiveness of the assimilation of both these types of observations simultaneously.


2021 ◽  
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization function is newly constructed. The functions produce non-negative definite localization matrices, which are suitable for use in variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate analogs of all four functions in a simple experiment with the bivariate Lorenz '96 system. In our experiment the multivariate Gaspari-Cohn function leads to better performance than any of the other localization functions.


2007 ◽  
Vol 135 (4) ◽  
pp. 1506-1521 ◽  
Author(s):  
Haixia Liu ◽  
Ming Xue ◽  
R. James Purser ◽  
David F. Parrish

Abstract Anisotropic recursive filters are implemented within a three-dimensional variational data assimilation (3DVAR) framework to efficiently model the effect of flow-dependent background error covariance. The background error covariance is based on an estimated error field and on the idea of Riishøjgaard. In the anisotropic case, the background error pattern can be stretched or flattened in directions oblique to the alignment of the grid coordinates and is constructed by applying, at each point, six recursive filters along six directions corresponding, in general, to a special configuration of oblique lines of the grid. The recursive filters are much more efficient than corresponding explicit filters used in an earlier study and are therefore more suitable for real-time numerical weather prediction. A set of analysis experiments are conducted at a mesoscale resolution to examine the effectiveness of the 3DVAR system in analyzing simulated global positioning system (GPS) slant-path water vapor observations from ground-based GPS receivers and observations from collocated surface stations. It is shown that the analyses produced with recursive filters are at least as good as those with corresponding explicit filters. In some cases, the recursive filters actually perform better. The impact of flow-dependent background errors modeled using the anisotropic recursive filters is also examined. The use of anisotropic filters improves the analysis, especially in terms of finescale structures. The analysis system is found to be effective in the presence of typical observational errors. The sensitivity of isotropic and anisotropic recursive-filter analyses to the decorrelation scales is also examined systematically.


2021 ◽  
Author(s):  
Thibault Malou ◽  
Jérome Monnier

<p>The spatial altimetry provides an important amount of water surface height data from multi-missions satellites (especially Jason-3, Sentinel-3A/B and the forthcoming NASA-CNES SWOT mission). To exploit at best the potential of spatial altimetry, the present study proposes on the derivation of a model adapted to spatial observations scale; a diffusive-wave type model but adapted to a double scale [1].</p><p>Moreover, Green-like kernel can be employed to derived covariance operators, therefore they may provide an approximation of the covariance kernel of the background error in Variational Data Assimilation processes. Following the derivation of the aforementioned original flow model, we present the derivation of a Green kernel which provides an approximation of the covariance kernel of the background error for the bathymetry (i.e. the control variable) [2].</p><p>This approximation of the covariance kernel is used to infer the bathymetry in the classical Saint-Venant’s (Shallow-Water) equations with better accuracy and faster convergence than if not introducing an adequate covariance operator [3].</p><p>Moreover, this Green kernel helps to analyze the sensitivity of the double-scale diffusive waves (or even the Saint-Venant’s equations) with respect to the bathymetry.</p><p>Numerical results are analyzed on real like datasets (derived from measurements of the Rio Negro, Amazonia basin).</p><p>The double-scale diffusive wave provide more accurate results than the classical version. Next, in terms of inversions, the derived physically-based covariance operators enable to improve the inferences, compared to the usual exponential one.</p><p>[1] T. Malou, J. Monnier "Double-scale diffusive wave equations dedicated to spatial river observations". In prep.</p><p>[2] T. Malou, J. Monnier "Physically-based covariance kernel for variational data assimilation in spatial hydrology". In prep.</p><p>[3] K. Larnier, J. Monnier, P.-A. Garambois, J. Verley. "River discharge and bathymetry estimations from SWOT altimetry measurements". Inv. Pb. Sc. Eng (2020).</p>


2020 ◽  
Vol 148 (6) ◽  
pp. 2331-2350 ◽  
Author(s):  
Chih-Chien Chang ◽  
Stephen G. Penny ◽  
Shu-Chih Yang

Abstract The viability of a parameterless hybrid data assimilation algorithm is investigated. As an alternative to the traditional hybrid covariance scheme, hybrid gain data assimilation (HGDA) was proposed to blend the gain matrix derived from the variational method and the ensemble-based Kalman filter (EnKF). A previously proposed HGDA algorithm uses a two-step process applying the EnKF with a variational update. The algorithm is modified here to limit the variational correction to the subspace orthogonal to the ensemble perturbation subspace without the use of a hybrid weighting parameter, as the optimization of such a parameter is nontrivial. The modified HGDA algorithm is investigated with a quasigeostrophic (QG) model. Results indicate that when the climatological background error covariance matrix B and the observation error covariance R are well estimated, state estimates from the parameterless HGDA are more accurate than the parameter-dependent HGDA. The parameterless HGDA not only has potential advantages over the standard HGDA as an online data assimilation algorithm but can also serve as a valuable diagnostic tool for tuning the B and R matrices. It is also found that in this QG model, the empirically best static B matrix for the stand-alone 3DVAR has high variance at larger spatial scales, which degrades the accuracy of the HGDA systems and may not be the best choice for hybrid methods in general. A comparison of defining the orthogonal subspace globally or locally demonstrates that global orthogonality is more advantageous for stabilizing the hybrid system and maintains large-scale balances.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 570
Author(s):  
Antonio Stanesic ◽  
Kristian Horvath ◽  
Endi Keresturi

The evaluation of several climatological background-error covariance matrix (defined as the B matrix) estimation methods was performed using the ALADIN limited-area modeling data-assimilation system at a 4 km horizontal grid spacing. The B matrices compared were derived using the standard National Meteorological Center (NMC) and ensemble-based estimation methods. To test the influence of lateral boundary condition (LBC) perturbations on the characteristics of ensemble-based B matrix, two ensemble prediction systems were established: one used unperturbed lateral boundary conditions (ENS) and another used perturbed lateral boundary conditions (ENSLBC). The characteristics of the three B matrices were compared through a diagnostic comparison, while the influence of the different B matrices on the analysis and quality of the forecast were evaluated for the ENSLBC and NMC matrices. The results showed that the lateral boundary condition perturbations affected all the control variables, while the smallest influence was found for the specific humidity. The diagnostic comparison showed that the ensemble-based estimation method shifted the correlations toward the smaller spatial scales, while the LBC perturbations gave rise to larger spatial scales. The influence on the analysis showed a smaller spatial correlation for the ensemble B matrix compared to that of the NMC, with the most pronounced differences for the specific humidity. The verification of the forecast showed modest improvement for the experiment with the ensemble B matrix. Among the methods tested, the results suggest that the ensemble-based data-assimilation method is the favorable approach for background-error covariance calculation in high-resolution limited-area data assimilation systems.


2011 ◽  
Vol 139 (6) ◽  
pp. 1879-1890 ◽  
Author(s):  
Max Yaremchuk ◽  
Dmitri Nechaev ◽  
Chudong Pan

Abstract A hybrid background error covariance (BEC) model for three-dimensional variational data assimilation of glider data into the Navy Coastal Ocean Model (NCOM) is introduced. Similar to existing atmospheric hybrid BEC models, the proposed model combines low-rank ensemble covariances with the heuristic Gaussian-shaped covariances to estimate forecast error statistics. The distinctive features of the proposed BEC model are the following: (i) formulation in terms of inverse error covariances, (ii) adaptive determination of the rank m of with information criterion based on the innovation error statistics, (iii) restriction of the heuristic covariance operator to the null space of , and (iv) definition of the BEC magnitudes through separate analyses of the innovation error statistics in the state space and the null space of . The BEC model is validated by assimilation experiments with simulated and real data obtained during a glider survey of the Monterey Bay in August 2003. It is shown that the proposed hybrid scheme substantially improves the forecast skill of the heuristic covariance model.


2021 ◽  
Vol 28 (4) ◽  
pp. 565-583
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through the inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work, we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari–Cohn localization function; the within-component localization functions are standard Gaspari–Cohn with different localization radii, while the cross-localization function is newly constructed. The functions produce positive semidefinite localization matrices which are suitable for use in both Kalman filters and variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments, the multivariate Gaspari–Cohn function leads to better performance than any of the other multivariate localization functions.


Sign in / Sign up

Export Citation Format

Share Document