scholarly journals Comparison of NMC and Ensemble-Based Climatological Background-Error Covariances in an Operational Limited-Area Data Assimilation System

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 570
Author(s):  
Antonio Stanesic ◽  
Kristian Horvath ◽  
Endi Keresturi

The evaluation of several climatological background-error covariance matrix (defined as the B matrix) estimation methods was performed using the ALADIN limited-area modeling data-assimilation system at a 4 km horizontal grid spacing. The B matrices compared were derived using the standard National Meteorological Center (NMC) and ensemble-based estimation methods. To test the influence of lateral boundary condition (LBC) perturbations on the characteristics of ensemble-based B matrix, two ensemble prediction systems were established: one used unperturbed lateral boundary conditions (ENS) and another used perturbed lateral boundary conditions (ENSLBC). The characteristics of the three B matrices were compared through a diagnostic comparison, while the influence of the different B matrices on the analysis and quality of the forecast were evaluated for the ENSLBC and NMC matrices. The results showed that the lateral boundary condition perturbations affected all the control variables, while the smallest influence was found for the specific humidity. The diagnostic comparison showed that the ensemble-based estimation method shifted the correlations toward the smaller spatial scales, while the LBC perturbations gave rise to larger spatial scales. The influence on the analysis showed a smaller spatial correlation for the ensemble B matrix compared to that of the NMC, with the most pronounced differences for the specific humidity. The verification of the forecast showed modest improvement for the experiment with the ensemble B matrix. Among the methods tested, the results suggest that the ensemble-based data-assimilation method is the favorable approach for background-error covariance calculation in high-resolution limited-area data assimilation systems.

2018 ◽  
Vol 146 (5) ◽  
pp. 1367-1381 ◽  
Author(s):  
Jean-François Caron ◽  
Mark Buehner

Abstract Scale-dependent localization (SDL) consists of applying the appropriate (i.e., different) amount of localization to different ranges of background error covariance spatial scales while simultaneously assimilating all of the available observations. The SDL method proposed by Buehner and Shlyaeva for ensemble–variational (EnVar) data assimilation was tested in a 3D-EnVar version of the Canadian operational global data assimilation system. It is shown that a horizontal-scale-dependent horizontal localization leads to implicit vertical-level-dependent, variable-dependent, and location-dependent horizontal localization. The results from data assimilation cycles show that horizontal-scale-dependent horizontal covariance localization is able to improve the forecasts up to day 5 in the Northern Hemisphere extratropical summer period and up to day 7 in the Southern Hemisphere extratropical winter period. In the tropics, use of SDL results in improvements similar to what can be obtained by increasing the uniform amount of spatial localization. An investigation of the dynamical balance in the resulting analysis increments demonstrates that SDL does not further harm the balance between the mass and the rotational wind fields, as compared to the traditional localization approach. Potential future applications for the SDL method are also discussed.


2020 ◽  
Author(s):  
Jose M Gonzalez-Ondina ◽  
Lewis Sampson ◽  
Georgy Shapiro

<p>Current operational ocean modelling systems often use variational data assimilation (DA) to improve the skill of the ocean predictions by combining the numerical model with observational data. Many modern methods are derivatives of objective (optimal) interpolation techniques developed by L. S. Gandin in the 1950s, which requires computation of the background error covariance matrix (BECM), and much research has been devoted into overcoming the difficulties surrounding its calculation and improving its accuracy. In practice, due to time and memory constraints, the BECM is never fully computed. Instead, a simplified model is used, where the correlation at each point is modelled using a simple function while the variance and length scales are computed using error estimation methods such as the Hollingsworth-Lonnberg  or the NMC (National Meteorological Centre). Usually, the correlation is assumed to be horizontally isotropic, or to have a predefined anisotropy based on latitude. However, observations indicate that horizontal diffusion is sometimes anisotropic, hence this has to be propagated into BECM. It is suggested that including these anisotropies would improve the accuracy of the model predictions.</p><p>We present a new method to compute the BECM which allows to extract horizontal anisotropic components from observational data. Our method, unlike current techniques, is fundamentally multidimensional and can be applied to 2D or 3D sets of un-binned data. It also works better than other methods when observations are sparse, so there is no penalty when trying to extract the additional anisotropic components from the data.</p><p>Data Assimilation tools like NEMOVar use a matrix decomposition technique for the BECM in order to minimise the cost function. Our method is well suited to work with this type of decomposition, producing the different components of the decomposition which can be readily used by NEMOVar.</p><p>We have been able to show the spatial stability of our method to quantify anisotropy in areas of sparse observations. While also demonstrating the importance of including anisotropic representation within the background error. Using the coastal regions of the Arabian Sea, it is possible to analyse where improvements to diffusion can be included. Further extensions of this method could lead to a fully anisotropic diffusion operator for the calculation of BECM in NEMOVar. However further testing and optimization are needed to correctly implement this into operational assimilation systems.</p>


2015 ◽  
Vol 143 (9) ◽  
pp. 3804-3822 ◽  
Author(s):  
Zhijin Li ◽  
James C. McWilliams ◽  
Kayo Ide ◽  
John D. Farrara

Abstract A multiscale data assimilation (MS-DA) scheme is formulated for fine-resolution models. A decomposition of the cost function is derived for a set of distinct spatial scales. The decomposed cost function allows for the background error covariance to be estimated separately for the distinct spatial scales, and multi-decorrelation scales to be explicitly incorporated in the background error covariance. MS-DA minimizes the partitioned cost functions sequentially from large to small scales. The multi-decorrelation length scale background error covariance enhances the spreading of sparse observations and prevents fine structures in high-resolution observations from being overly smoothed. The decomposition of the cost function also provides an avenue for mitigating the effects of scale aliasing and representativeness errors that inherently exist in a multiscale system, thus further improving the effectiveness of the assimilation of high-resolution observations. A set of one-dimensional experiments is performed to examine the properties of the MS-DA scheme. Emphasis is placed on the assimilation of patchy high-resolution observations representing radar and satellite measurements, alongside sparse observations representing those from conventional in situ platforms. The results illustrate how MS-DA improves the effectiveness of the assimilation of both these types of observations simultaneously.


2021 ◽  
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization function is newly constructed. The functions produce non-negative definite localization matrices, which are suitable for use in variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate analogs of all four functions in a simple experiment with the bivariate Lorenz '96 system. In our experiment the multivariate Gaspari-Cohn function leads to better performance than any of the other localization functions.


2016 ◽  
Author(s):  
Paolo Oddo ◽  
Andrea Storto ◽  
Srdjan Dobricic ◽  
Aniello Russo ◽  
Craig Lewis ◽  
...  

Abstract. A hybrid variational-ensemble data assimilation scheme to estimate the vertical and horizontal parts of the background-error covariance matrix for an ocean variational data assimilation system is presented and tested in a limited area ocean model implemented in the western Mediterranean Sea. An extensive dataset collected during the Recognized Environmental Picture Experiments conducted in June 2014 by the Centre for Maritime Research and Experimentation has been used for assimilation and validation. The hybrid scheme is used to both correct the systematic error introduced in the system from the external forcing (initial, lateral and surface open boundary conditions) and model parameterization and improve the representation of small scale errors in the Background Error Covariance matrix. An ensemble system is run off-line for further use in the hybrid scheme, generated through perturbation of assimilated observations. Results of four different experiments have been compared. The reference experiment uses the classical static formulation of the background error covariance matrix and has no systematic error correction. The other three experiments account, or not, for systematic error correction and hybrid daily estimates of the background error covariance matrix combining the static and the ensemble derived errors statistics. Results show that the hybrid scheme when used in conjunction with the systematic error correction reduce the mean absolute error of temperature and salinity misfit by 55 % and 42 % respectively versus statistics arising from standard climatological covariances without systematic error correction.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1137-1153 ◽  
Author(s):  
Paolo Oddo ◽  
Andrea Storto ◽  
Srdjan Dobricic ◽  
Aniello Russo ◽  
Craig Lewis ◽  
...  

Abstract. A hybrid variational-ensemble data assimilation scheme to estimate the vertical and horizontal parts of the background error covariance matrix for an ocean variational data assimilation system is presented and tested in a limited-area ocean model implemented in the western Mediterranean Sea. An extensive data set collected during the Recognized Environmental Picture Experiments conducted in June 2014 by the Centre for Maritime Research and Experimentation has been used for assimilation and validation. The hybrid scheme is used to both correct the systematic error introduced in the system from the external forcing (initialisation, lateral and surface open boundary conditions) and model parameterisation, and improve the representation of small-scale errors in the background error covariance matrix. An ensemble system is run offline for further use in the hybrid scheme, generated through perturbation of assimilated observations. Results of four different experiments have been compared. The reference experiment uses the classical stationary formulation of the background error covariance matrix and has no systematic error correction. The other three experiments account for, or not, systematic error correction and hybrid background error covariance matrix combining the static and the ensemble-derived errors of the day. Results show that the hybrid scheme when used in conjunction with the systematic error correction reduces the mean absolute error of temperature and salinity misfit by 55 and 42 % respectively, versus statistics arising from standard climatological covariances without systematic error correction.


2020 ◽  
Vol 148 (6) ◽  
pp. 2331-2350 ◽  
Author(s):  
Chih-Chien Chang ◽  
Stephen G. Penny ◽  
Shu-Chih Yang

Abstract The viability of a parameterless hybrid data assimilation algorithm is investigated. As an alternative to the traditional hybrid covariance scheme, hybrid gain data assimilation (HGDA) was proposed to blend the gain matrix derived from the variational method and the ensemble-based Kalman filter (EnKF). A previously proposed HGDA algorithm uses a two-step process applying the EnKF with a variational update. The algorithm is modified here to limit the variational correction to the subspace orthogonal to the ensemble perturbation subspace without the use of a hybrid weighting parameter, as the optimization of such a parameter is nontrivial. The modified HGDA algorithm is investigated with a quasigeostrophic (QG) model. Results indicate that when the climatological background error covariance matrix B and the observation error covariance R are well estimated, state estimates from the parameterless HGDA are more accurate than the parameter-dependent HGDA. The parameterless HGDA not only has potential advantages over the standard HGDA as an online data assimilation algorithm but can also serve as a valuable diagnostic tool for tuning the B and R matrices. It is also found that in this QG model, the empirically best static B matrix for the stand-alone 3DVAR has high variance at larger spatial scales, which degrades the accuracy of the HGDA systems and may not be the best choice for hybrid methods in general. A comparison of defining the orthogonal subspace globally or locally demonstrates that global orthogonality is more advantageous for stabilizing the hybrid system and maintains large-scale balances.


Sign in / Sign up

Export Citation Format

Share Document