scholarly journals Retrospective El Niño Forecasts Using an Improved Intermediate Coupled Model

2005 ◽  
Vol 133 (9) ◽  
pp. 2777-2802 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Stephen E. Zebiak ◽  
Richard Kleeman ◽  
Noel Keenlyside

Abstract A new intermediate coupled model (ICM) is presented and employed to make retrospective predictions of tropical Pacific sea surface temperature (SST) anomalies. The ocean dynamics is an extension of the McCreary baroclinic modal model to include varying stratification and certain nonlinear effects. A standard configuration is chosen with 10 baroclinic modes plus two surface layers, which are governed by Ekman dynamics and simulate the combined effects of the higher baroclinic modes from 11 to 30. A nonlinear correction associated with vertical advection of zonal momentum is incorporated and applied (diagnostically) only within the two surface layers, forced by the linear part through nonlinear advection terms. As a result of these improvements, the model realistically simulates the mean equatorial circulation and its variability. The ocean thermodynamics include an SST anomaly model with an empirical parameterization for the temperature of subsurface water entrained into the mixed layer (Te), which is optimally calculated in terms of sea surface height (SSH) anomalies using an empirical orthogonal function (EOF) analysis technique from historical data. The ocean model is then coupled to a statistical atmospheric model that estimates wind stress (τ) anomalies based on a singular value decomposition (SVD) analysis between SST anomalies observed and τ anomalies simulated from ECHAM4.5 (24-member ensemble mean). The coupled system exhibits realistic interannual variability associated with El Niño, including a predominant standing pattern of SST anomalies along the equator and coherent phase relationships among different atmosphere–ocean anomaly fields with a dominant 3-yr oscillation period. Twelve-month hindcasts/forecasts are made during the period 1963–2002, starting each month. Only observed SST anomalies are used to initialize the coupled predictions. As compared to other prediction systems, this coupled model has relatively small systematic errors in the predicted SST anomalies, and its SST prediction skill is apparently competitive with that of most advanced coupled systems incorporating sophisticated ocean data assimilation. One striking feature is that the model skill surpasses that of persistence at all lead times over the central equatorial Pacific. Prediction skill is strongly dependent on the season, with the correlations attaining a minimum in spring and a maximum in fall. Cross-validation experiments are performed to examine the sensitivity of the prediction skill to the data periods selected for training the empirical Te model. It is demonstrated that the artificial skill introduced by using a dependently constructed Te model is not significant. Independent forecasts are made for the period 1997–2002 when no dependent data are included in constructing the two empirical models (Te and τ). The coupled model has reasonable success in predicting transition to warm phase and to cold phase in the spring of 1997 and 1998, respectively. Potential problems and further improvements are discussed with the new intermediate prediction system.

Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 187-194 ◽  
Author(s):  
F. Zheng ◽  
J. Zhu

Abstract. The 2006–2007 El Niño event, an unusually weak event, was predicted by most models only after the warming in the eastern Pacific had commenced. In this study, on the basis of an El Niño prediction system, roles of the initial ocean surface and subsurface states on predicting the 2006–2007 El Niño event are investigated to determine conditions favorable for predicting El Niño growth and are isolated in three sets of hindcast experiments. The hindcast is initialized through assimilation of only the sea surface temperature (SST) observations to optimize the initial surface condition, only the sea level (SL) data to update the initial subsurface state, or both the SST and SL data. Results highlight that the hindcasts with three different initial states can all successfully predict the 2006–2007 El Niño event 1 year in advance and that the hindcast initialized by both the SST and SL data performs best. A comparison between the various sets of hindcast results further demonstrates that successful prediction is more significantly affected by the initial subsurface state than by the initial surface condition. The accurate initial surface state can trigger the easier prediction of the 2006–2007 El Niño, whereas a more reasonable initial subsurface state can contribute to improving the prediction in the growth of the warm event.


2005 ◽  
Vol 18 (9) ◽  
pp. 1369-1380 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Antonio J. Busalacchi

Abstract The role of subsurface temperature variability in modulating El Niño–Southern Oscillation (ENSO) properties is examined using an intermediate coupled model (ICM), consisting of an intermediate dynamic ocean model and a sea surface temperature (SST) anomaly model. An empirical procedure is used to parameterize the temperature of subsurface water entrained into the mixed layer (Te) from sea level (SL) anomalies via a singular value decomposition (SVD) analysis for use in simulating sea surface temperature anomalies (SSTAs). The ocean model is coupled to a statistical atmospheric model that estimates wind stress anomalies also from an SVD analysis. Using the empirical Te models constructed from two subperiods, 1963–79 (T63–79e) and 1980–96 (T80–96e), the coupled system exhibits strikingly different properties of interannual variability (the oscillation period, spatial structure, and temporal evolution). For the T63–79e model, the system features a 2-yr oscillation and westward propagation of SSTAs on the equator, while for the T80–96e model, it is characterized by a 5-yr oscillation and eastward propagation. These changes in ENSO properties are consistent with the behavior shift of El Niño observed in the late 1970s. Heat budget analyses further demonstrate a controlling role played by the vertical advection of subsurface temperature anomalies in determining the ENSO properties.


2005 ◽  
Vol 18 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Amy Solomon ◽  
Fei-Fei Jin

Abstract Concurrent with most large El Niño events, cold sea surface temperature (SST) anomalies are observed over the western Pacific warm pool region (WPWP). Observational evidence that SST anomalies that form in the off-equatorial western Pacific during El Niño–Southern Oscillation (ENSO) cycles are forced by subsurface ocean processes equatorward of 12°N and air–sea fluxes poleward of 12°N is presented. It is demonstrated that diurnal mixing in the ocean equatorward of 12°N plays a significant role in bringing subsurface temperature anomalies to the sea surface during an El Niño event. The role of SST anomalies equatorward of 12°N in ENSO cycles is tested in the Zebiak–Cane coupled model, modified to allow for the impact of subsurface temperatures on SSTs. This coupled model successfully simulates cold SST anomalies in the off-equatorial northwestern Pacific that are observed to occur during the warm phase of ENSO and the atmospheric response to these anomalies, which is composed of both westerlies in the central Pacific and easterlies in the far western equatorial Pacific. It is found that there is little net change in the zonal mean wind stress at the equator, suggesting that the westerlies cancel the impact of the easterlies on the basin-scale tilt of the equatorial zonal mean thermocline depth. The anomalous westerly winds in the central equatorial Pacific are found to increase the amplitude of an El Niño event directly by increasing anomalous warm zonal advection and reducing upwelling. Moreover, the off-equatorial anticyclonic wind stress associated with the cold SST anomalies during the warm phase of ENSO tends to reduce the discharge of the equatorial heat content. Thus, the coupled processes over the western Pacific warm pool can serve as a positive feedback to amplify ENSO cycles.


2006 ◽  
Vol 19 (20) ◽  
pp. 5227-5252 ◽  
Author(s):  
Serena Illig ◽  
Boris Dewitte

Abstract The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic component of the ICM consists of a six-baroclinic mode ocean model and a simple mixed layer model that has been validated from observations. The atmospheric component is a global atmospheric general circulation model developed at the University of California, Los Angeles (UCLA). In a forced context, the ICM realistically simulates both the sea surface temperature anomaly (SSTA) variability in the equatorial band, and the relaxation of the Atlantic northeast trade winds and the intensification of the equatorial westerlies in boreal spring that usually follows an El Niño event. The results of coupled experiments with or without Pacific ENSO forcing and with or without explicit air–sea interactions in the equatorial Atlantic indicate that the background energy in the equatorial Atlantic is provided by ENSO. However, the time scale of the variability and the magnitude of some peculiar events cannot be explained solely by ENSO remote forcing. It is demonstrated that the peak of SSTA variability in the 1–3-yr band as observed in the equatorial Atlantic is due to the local air–sea interactions and is not a linear response to ENSO. Seasonal phase locking in boreal summer is also the result of the local coupling. The analysis of the intrinsic sustainable modes indicates that the Atlantic El Niño is qualitatively a noise-driven stable system. Such a system can produce coherent interdecadal variability that is not forced by the Pacific or extraequatorial variability. It is shown that when a simple slab mixed layer model is embedded into the system to simulate the northern tropical Atlantic (NTA) SST variability, the warming over NTA following El Niño events have characteristics (location and peak phase) that depend on air–sea interaction in the equatorial Atlantic. In the model, the interaction between the equatorial mode and NTA can produce a dipolelike structure of the SSTA variability that evolves at a decadal time scale. The results herein illustrate the complexity of the tropical Atlantic ocean–atmosphere system, whose predictability jointly depends on ENSO and the connections between the Atlantic modes of variability.


2012 ◽  
Vol 69 (1) ◽  
pp. 97-115 ◽  
Author(s):  
Prasanth A. Pillai ◽  
H. Annamalai

Abstract Diagnostics from observations and multicentury integrations of a coupled model [Geophysical Fluid Dynamics Laboratory (GFDL) coupled model version 2.1 (CM2.1)] indicate that about 65% of the severe monsoons (rainfall > 1.5 standard deviations of its long-term mean) over South Asia are associated with sea surface temperature (SST) anomalies over the equatorial Pacific during the developing phase of ENSO, and another 30% are associated with SST variations over the tropical Indo-Pacific warm pool. The present research aims to identify the moist processes that initiate the dryness (wetness) and provide a precursor for rainfall anomalies over South Asia in spring during El Niño (La Niña). The hypothesis in this paper, based on CM2.1 composites, is that at low levels El Niño–forced equatorial easterly wind anomalies over the Indian Ocean, resulting from Ekman pumping, promote anticyclonic vorticity over the northern Indian Ocean, whose poleward flank advects dry air from northern latitudes to South Asia. This is tested by performing ensemble simulations with the atmospheric component of CM2.1 (AM2.1) and applying moisture and moist static energy budgets. During El Niño, AM2.1 solutions capture the anticyclonic vorticity formation over the northern Indian Ocean 20–25 days earlier than organized negative rainfall anomalies over South Asia, and the advection of climatological air of lower moisture content by these anomalous winds initiates the dryness over South Asia from April onward. This long lead time embodied in this precursor signal can be exploited for predicting severe monsoons. During ENSO neutral conditions, the amplitude of regional SST anomalies during spring is insufficient to produce such a precursor signal. The dominance of the term warrants monitoring the three-dimensional moisture distribution for better understanding, modeling, and predicting of severe monsoons.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1135
Author(s):  
Yujie Liu ◽  
Shuang Li

This paper discovers a spatial feature of interannual sea surface temperature (SST) anomalies over the South China Sea (SCS) in the boreal spring, based on the Simple Ocean Data Assimilation (SODA) monthly data in the period from January 1958 to December 2010. The Empirical Orthogonal Function (EOF) analysis of interannual SST anomalies shows a north–south discrepant pattern of the first mode, which is characterized by higher (lower) anomalies in the northern (southern) SCS and possessing seasonal phase locking (in the boreal spring). Besides, the high correlation coefficient between the time series of the first EOF mode and the Nino 3 SST anomalies during winter reveals that this discrepant pattern is likely caused by El Niño events. The composites of SST anomalies show that this discrepant pattern appears in the eastern Pacific (EP) El Niño events, while it does not exist in the Central Pacific (CP) El Niño events. It is believed that the western North Pacific anticyclone (WNPA) plays a key role in conveying the El Niño impact on the interannual variabilities of SCS SST in the EP El Niño events. The anomalous anticyclone in the Philippine Sea weakens the northeasterly monsoon over the SCS by its southwest portion during the mature phases of the EP El Niño events. This anomalous atmospheric circulation contributes to the north–south discrepant pattern of the wind stress anomalies over the SCS in the EP El Niño mature winters, and then leads to the north–south dipole pattern of the contemporaneous latent heat flux anomalies. The latent heat flux is a major contributor to the surface net heat flux, and heat budget analysis shows that the net heat flux is the major contributor to the SCS SST anomalies during the spring for the EP El Niño events, and the north–south discrepancy of SCS SST anomalies in the succeeding spring is ultimately formed.


2003 ◽  
Vol 16 (9) ◽  
pp. 1283-1301 ◽  
Author(s):  
Hui Su ◽  
J. David Neelin ◽  
Joyce E. Meyerson

Abstract During El Niño, there are substantial tropospheric temperature anomalies across the entire tropical belt associated with the warming of sea surface temperatures (SSTs) in the central and eastern Pacific. The quasi-equilibrium tropical circulation model (QTCM) is used to investigate the mechanisms for tropical tropospheric temperature response to SST forcing. In both observations and model simulations, the tropical averaged tropospheric temperature anomaly 〈T̂′〉 is approximately linear with the tropical mean SST anomaly 〈T′s〉 for observed SST forcing. Regional SST anomaly experiments are used to estimate regional sensitivity measures and quantify the degree of nonlinearity. For instance, SST anomalies of 3°C in the central Pacific would give a nonlinear 〈T̂′〉 response about 15% greater than a linear fit to small SST anomaly experiments would predict, but for the maximum observed SST anomaly in this region the response differs by only 5% from linearity. Nonlinearity in 〈T̂′〉 response is modest even when local precipitation response is highly nonlinear. While temperature anomalies have large spatial scales, the main precipitation anomaly tends to be local to the SST anomaly regions. The tropical averaged precipitation anomalies 〈P′〉 do not necessarily have a simple relation to tropical averaged tropospheric temperature anomalies or SST forcing. The approximate linearity of the 〈T̂′〉 response is due to two factors: 1) the strong nonlinearities that occur locally tend to be associated with the transport terms, which become small in the large-area average; and 2) the dependence on temperature of the top-of-atmosphere and surface fluxes has only weak nonlinearity over the range of 〈T̂′〉 variations. Analytical approximations to the QTCM suggest that the direct impact of climatological SST, via flux terms, contributes modestly to regional variations in the sensitivity α of 〈T̂′〉 to 〈T′s〉. Wind speed has a fairly strong effect on α but tends to oppose the direct effect of SST since cold SST regions often have stronger climatological wind, which would yield larger slopes. A substantial contribution to regional variation in α comes from the different reaction of moisture to SST anomalies in precipitating and nonprecipitating regions. Although regions over climatologically warm water have a slightly higher sensitivity, subregions of El Niño SST anomalies even in the colder eastern Pacific contribute substantially to tropospheric temperature anomalies.


2005 ◽  
Vol 18 (2) ◽  
pp. 302-319 ◽  
Author(s):  
H. Annamalai ◽  
S. P. Xie ◽  
J. P. McCreary ◽  
R. Murtugudde

Abstract Prior to the 1976–77 climate shift (1950–76), sea surface temperature (SST) anomalies in the tropical Indian Ocean consisted of a basinwide warming during boreal fall of the developing phase of most El Niños, whereas after the shift (1977–99) they had an east–west asymmetry—a consequence of El Niño being associated with the Indian Ocean Dipole/Zonal mode. In this study, the possible impact of these contrasting SST patterns on the ongoing El Niño is investigated, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes. Specifically, analyses of reanalysis products during the El Niño onset indicate that after the climate shift a low-level anticyclone over the South China Sea was shifted into the Bay of Bengal and that equatorial westerly anomalies in the Pacific Ocean were considerably stronger. The present study focuses on determining influence of Indian Ocean SST on these changes. A suite of AGCM experiments, each consisting of a 10-member ensemble, is carried out to assess the relative importance of remote (Pacific) versus local (Indian Ocean) SST anomalies in determining precipitation anomalies over the equatorial Indian Ocean. Solutions indicate that both local and remote SST anomalies are necessary for realistic simulations, with convection in the tropical west Pacific and the subsequent development of the South China Sea anticyclone being particularly sensitive to Indian Ocean SST anomalies. Prior to the climate shift, the basinwide Indian Ocean SST anomalies generate an atmospheric Kelvin wave associated with easterly flow over the equatorial west-central Pacific, thereby weakening the westerly anomalies associated with the developing El Niño. In contrast, after the shift, the east–west contrast in Indian Ocean SST anomalies does not generate a significant Kelvin wave response, and there is little effect on the El Niño–induced westerlies. The Linear Baroclinic Model (LBM) solutions confirm the AGCM’s results.


Sign in / Sign up

Export Citation Format

Share Document