scholarly journals Preemptive Forecasts Using an Ensemble Kalman Filter

2007 ◽  
Vol 135 (10) ◽  
pp. 3484-3495 ◽  
Author(s):  
Brian J. Etherton

Abstract An ensemble Kalman filter (EnKF) estimates the error statistics of a model forecast using an ensemble of model forecasts. One use of an EnKF is data assimilation, resulting in the creation of an increment to the first-guess field at the observation time. Another use of an EnKF is to propagate error statistics of a model forecast forward in time, such as is done for optimizing the location of adaptive observations. Combining these two uses of an ensemble Kalman filter, a “preemptive forecast” can be generated. In a preemptive forecast, the increment to the first-guess field is, using ensembles, propagated to some future time and added to the future control forecast, resulting in a new forecast. This new forecast requires no more time to produce than the time needed to run a data assimilation scheme, as no model integration is necessary. In an observing system simulation experiment (OSSE), a barotropic vorticity model was run to produce a 300-day “nature run.” The same model, run with a different vorticity forcing scheme, served as the forecast model. The model produced 24- and 48-h forecasts for each of the 300 days. The model was initialized every 24 h by assimilating observations of the nature run using a hybrid ensemble Kalman filter–three-dimensional variational data assimilation (3DVAR) scheme. In addition to the control forecast, a 64-member forecast ensemble was generated for each of the 300 days. Every 24 h, given a set of observations, the 64-member ensemble, and the control run, an EnKF was used to create 24-h preemptive forecasts. The preemptive forecasts were more accurate than the unmodified, original 48-h forecasts, though not quite as accurate as the 24-h forecast obtained from a new model integration initialized by assimilating the same observations as were used in the preemptive forecasts. The accuracy of the preemptive forecasts improved significantly when 1) the ensemble-based error statistics used by the EnKF were localized using a Schur product and 2) a model error term was included in the background error covariance matrices.

2010 ◽  
Vol 138 (10) ◽  
pp. 3946-3966 ◽  
Author(s):  
Jean-François Caron ◽  
Luc Fillion

Abstract This study examines the modification to the balance properties of the analysis increments in a global three-dimensional variational data assimilation scheme when using flow-dependent background-error covariances derived from an operational ensemble Kalman filter instead of static homogenous and isotropic background-error covariances based on lagged forecast differences. It is shown that the degree of balance in the analysis increments is degraded when the former method is used. This change can be attributed in part to the reduced degree of rotational balance found in short-term ensemble Kalman filter perturbations as compared to lagged forecast differences based on longer-range forecasts. However, the use of a horizontal and vertical localization technique to increase the rank of the ensemble-based covariances are found to have a significant deleterious effect on the rotational balance with the largest detrimental impact coming from the vertical localization and affecting particularly the upper levels. The examination of the vertical motion part of the analysis increments revealed that the spatial covariance localization technique also produces unrealistic vertical structure of vertical motion increments with abnormally large increments near the surface. A comparison between the analysis increments from the ensemble Kalman filter and from the ensemble-based three-dimensional variational data assimilation (3D-Var) scheme showed that the balance characteristics of the analysis increments resulting from the two systems are very similar.


2010 ◽  
Vol 138 (5) ◽  
pp. 1550-1566 ◽  
Author(s):  
Mark Buehner ◽  
P. L. Houtekamer ◽  
Cecilien Charette ◽  
Herschel L. Mitchell ◽  
Bin He

Abstract An intercomparison of the Environment Canada variational and ensemble Kalman filter (EnKF) data assimilation systems is presented in the context of global deterministic NWP. In an EnKF experiment having the same spatial resolution as the inner loop in the four-dimensional variational data assimilation system (4D-Var), the mean of each analysis ensemble is used to initialize the higher-resolution deterministic forecasts. Five different variational data assimilation experiments are also conducted. These include both 4D-Var and 3D-Var (with first guess at appropriate time) experiments using either (i) prescribed background-error covariances similar to those used operationally, which are static in time and include horizontally homogeneous and isotropic correlations; or (ii) flow-dependent covariances computed from the EnKF background ensembles with spatial covariance localization applied. The fifth variational data assimilation experiment is a new approach called the Ensemble-4D-Var (En-4D-Var). This approach uses 4D flow-dependent background-error covariances estimated from EnKF ensembles to produce a 4D analysis without the need for tangent-linear or adjoint versions of the forecast model. In this first part of a two-part paper, results from a series of idealized assimilation experiments are presented. In these experiments, only a single observation or vertical profile of observations is assimilated to explore the impact of various fundamental differences among the EnKF and the various variational data assimilation approaches considered. In particular, differences in the application of covariance localization in the EnKF and variational approaches are shown to have a significant impact on the assimilation of satellite radiance observations. The results also demonstrate that 4D-Var and the EnKF can both produce similar 4D background-error covariances within a 6-h assimilation window. In the second part, results from medium-range deterministic forecasts for the study period of February 2007 are presented for the EnKF and the five variational data assimilation approaches considered.


2010 ◽  
Vol 138 (5) ◽  
pp. 1567-1586 ◽  
Author(s):  
Mark Buehner ◽  
P. L. Houtekamer ◽  
Cecilien Charette ◽  
Herschel L. Mitchell ◽  
Bin He

Abstract An intercomparison of the Environment Canada variational and ensemble Kalman filter (EnKF) data assimilation systems is presented in the context of producing global deterministic numerical weather forecasts. Five different variational data assimilation approaches are considered including four-dimensional variational data assimilation (4D-Var) and three-dimensional variational data assimilation (3D-Var) with first guess at the appropriate time (3D-FGAT). Also included among these is a new approach, called Ensemble-4D-Var (En-4D-Var), that uses 4D ensemble background-error covariances from the EnKF. A description of the experimental configurations and results from single-observation experiments are presented in the first part of this two-part paper. The present paper focuses on results from medium-range deterministic forecasts initialized with analyses from the EnKF and the five variational data assimilation approaches for the period of February 2007. All experiments assimilate exactly the same full set of meteorological observations and use the same configuration of the forecast model to produce global deterministic medium-range forecasts. The quality of forecasts in the short (medium) range obtained by using the EnKF ensemble mean analysis is slightly degraded (improved) in the extratropics relative to using the 4D-Var analysis with background-error covariances similar to those used operationally. The use of the EnKF flow-dependent error covariances in the variational system (4D-Var or 3D-FGAT) leads to large (modest) forecast improvements in the southern extratropics (tropics) as compared with using covariances similar to the operational system (a gain of up to 9 h at day 5). The En-4D-Var approach leads to (i) either improved or similar forecast quality when compared with the 4D-Var experiment similar to the currently operational system, (ii) slightly worse forecast quality when compared with the 4D-Var experiment with EnKF error covariances, and (iii) generally similar forecast quality when compared with the EnKF experiment.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2012 ◽  
Vol 140 (2) ◽  
pp. 587-600 ◽  
Author(s):  
Meng Zhang ◽  
Fuqing Zhang

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.


2011 ◽  
Vol 139 (11) ◽  
pp. 3389-3404 ◽  
Author(s):  
Thomas Milewski ◽  
Michel S. Bourqui

Abstract A new stratospheric chemical–dynamical data assimilation system was developed, based upon an ensemble Kalman filter coupled with a Chemistry–Climate Model [i.e., the intermediate-complexity general circulation model Fast Stratospheric Ozone Chemistry (IGCM-FASTOC)], with the aim to explore the potential of chemical–dynamical coupling in stratospheric data assimilation. The system is introduced here in a context of a perfect-model, Observing System Simulation Experiment. The system is found to be sensitive to localization parameters, and in the case of temperature (ozone), assimilation yields its best performance with horizontal and vertical decorrelation lengths of 14 000 km (5600 km) and 70 km (14 km). With these localization parameters, the observation space background-error covariance matrix is underinflated by only 5.9% (overinflated by 2.1%) and the observation-error covariance matrix by only 1.6% (0.5%), which makes artificial inflation unnecessary. Using optimal localization parameters, the skills of the system in constraining the ensemble-average analysis error with respect to the true state is tested when assimilating synthetic Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) retrievals of temperature alone and ozone alone. It is found that in most cases background-error covariances produced from ensemble statistics are able to usefully propagate information from the observed variable to other ones. Chemical–dynamical covariances, and in particular ozone–wind covariances, are essential in constraining the dynamical fields when assimilating ozone only, as the radiation in the stratosphere is too slow to transfer ozone analysis increments to the temperature field over the 24-h forecast window. Conversely, when assimilating temperature, the chemical–dynamical covariances are also found to help constrain the ozone field, though to a much lower extent. The uncertainty in forecast/analysis, as defined by the variability in the ensemble, is large compared to the analysis error, which likely indicates some amount of noise in the covariance terms, while also reducing the risk of filter divergence.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hongze Leng ◽  
Junqiang Song ◽  
Fengshun Lu ◽  
Xiaoqun Cao

This study considers a new hybrid three-dimensional variational (3D-Var) and ensemble Kalman filter (EnKF) data assimilation (DA) method in a non-perfect-model framework, named space-expanded ensemble localization Kalman filter (SELKF). In this method, the localization operation is directly applied to the ensemble anomalies with a Schur Product, rather than to the full error covariance of the state in the EnKF. Meanwhile, the correction space of analysis increment is expanded to a space with larger dimension, and the rank of the forecast error covariance is significantly increased. This scheme can reduce the spurious correlations in the covariance and approximate the full-rank background error covariance well. Furthermore, a deterministic scheme is used to generate the analysis anomalies. The results show that the SELKF outperforms the perturbed EnKF given a relatively small ensemble size, especially when the length scale is relatively long or the observation error covariance is relatively small.


2020 ◽  
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional one-dimensional land surface models is that hyperresolution land models can explicitly simulate lateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface-groundwater land model by an ensemble Kalman filter. I discuss how differently the ensemble Kalman filter works when surface lateral flows are switched on and off. A horizontal background error covariance provided by overland flows is important to adjust the unobserved state variables (pressure head and soil moisture) and parameters (saturated hydraulic conductivity). However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.


2020 ◽  
Vol 24 (8) ◽  
pp. 3881-3898
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional 1-D land surface models is that hyperresolution land models can explicitly simulate lateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface–groundwater land model by an ensemble Kalman filter. I discuss how differently the ensemble Kalman filter works when surface lateral flows are switched on and off. A horizontal background error covariance provided by overland flows is important for adjusting the unobserved state variables (pressure head and soil moisture) and parameters (saturated hydraulic conductivity). However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.


Sign in / Sign up

Export Citation Format

Share Document