scholarly journals Verification of Tropical Cyclone Genesis Forecasts from Global Numerical Models: Comparisons between the North Atlantic and Eastern North Pacific Basins

2016 ◽  
Vol 31 (3) ◽  
pp. 947-955 ◽  
Author(s):  
Daniel J. Halperin ◽  
Henry E. Fuelberg ◽  
Robert E. Hart ◽  
Joshua H. Cossuth

Abstract Accurately forecasting tropical cyclone (TC) genesis is an important operational need, especially since the National Hurricane Center’s Tropical Weather Outlook product has been extended from 2 to 5 days. A previous study by the coauthors verified North Atlantic TC genesis forecasts from five global models out to 4 days during 2004–11. This study expands on the previous research by 1) verifying TC genesis forecasts over both the Atlantic and eastern North Pacific basins, 2) extending the forecast window to 5 days, and 3) updating the analysis period through 2014. Verification statistics are presented and compared between the two basins. Probability of detection and critical success indices generally are greater over the eastern North Pacific basin compared to the North Atlantic. There is a trade-off between models that exhibit a greater probability of detection and a greater false alarm ratio, and models that exhibit a smaller false alarm ratio and a smaller probability of detection. Results also reveal that the models preferentially miss TCs over the North Atlantic (eastern North Pacific) that have a relatively small radius of the outer closed isobar (radius of maximum wind) at the forecast genesis time. Overall, global models have become a more reliable source of TC genesis guidance during the past few years compared to the early years in the dataset.

2008 ◽  
Vol 23 (1) ◽  
pp. 17-28 ◽  
Author(s):  
John A. Knaff ◽  
Thomas A. Cram ◽  
Andrea B. Schumacher ◽  
James P. Kossin ◽  
Mark DeMaria

Abstract Annular hurricanes are a subset of intense tropical cyclones that have been shown in previous work to be significantly stronger, to maintain their peak intensities longer, and to weaken more slowly than average tropical cyclones. Because of these characteristics, they represent a significant forecasting challenge. This paper updates the list of annular hurricanes to encompass the years 1995–2006 in both the North Atlantic and eastern–central North Pacific tropical cyclone basins. Because annular hurricanes have a unique appearance in infrared satellite imagery, and form in a specific set of environmental conditions, an objective real-time method of identifying these hurricanes is developed. However, since the occurrence of annular hurricanes is rare (∼4% of all hurricanes), a special algorithm to detect annular hurricanes is developed that employs two steps to identify the candidates: 1) prescreening the data and 2) applying a linear discriminant analysis. This algorithm is trained using a dependent dataset (1995–2003) that includes 11 annular hurricanes. The resulting algorithm is then independently tested using datasets from the years 2004–06, which contained an additional three annular hurricanes. Results indicate that the algorithm is able to discriminate annular hurricanes from tropical cyclones with intensities greater than 84 kt (43.2 m s−1). The probability of detection or hit rate produced by this scheme is shown to be ∼96% with a false alarm rate of ∼6%, based on 1363 six-hour time periods with a tropical cyclone with an intensity greater than 84 kt (1995–2006).


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2018 ◽  
Vol 146 (4) ◽  
pp. 1133-1155 ◽  
Author(s):  
Michael S. Fischer ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero ◽  
Christopher M. Rozoff

The relationship between tropical cyclone (TC) convective characteristics and TC intensity change is explored using infrared and passive microwave satellite imagery of TCs in the North Atlantic and eastern North Pacific basins from 1989 to 2016. TC intensity change episodes were placed into one of four groups: rapid intensification (RI), slow intensification (SI), neutral (N), and weakening (W). To account for differences in the distributions of TC intensity among the intensity change groups, a normalization technique is introduced, which allows for the analysis of anomalous TC convective characteristics and their relationship to TC intensity change. A composite analysis of normalized convective parameters shows anomalously cold infrared and 85-GHz brightness temperatures, as well as anomalously warm 37-GHz brightness temperatures, in the upshear quadrants of the TC are associated with increased rates of TC intensification, including RI. For RI episodes in the North Atlantic basin, an increase in anomalous liquid hydrometeor content precedes anomalous ice hydrometeor content by approximately 12 h, suggesting convection deep enough to produce robust ice scattering is a symptom of, rather than a precursor to, RI. In the eastern North Pacific basin, the amount of anomalous liquid and ice hydrometeors increases in tandem near the onset of RI. Normalized infrared and passive microwave brightness temperatures can be utilized to skillfully predict episodes of RI, as the forecast skill of RI episodes using solely normalized convective parameters is comparable to the forecast skill of RI episodes by current operational statistical models.


2008 ◽  
Vol 21 (6) ◽  
pp. 1432-1439 ◽  
Author(s):  
Liguang Wu ◽  
Bin Wang

Abstract The recently reported increase in the proportion of intense hurricanes is considerably larger than those projected by the maximum potential intensity (MPI) theory and the results of numerical simulation. To reconcile this discrepancy, the authors examined the best-track datasets for the North Atlantic (NA), western North Pacific (WNP), and eastern North Pacific (ENP) basins. It was found that the changes in the tropical cyclone formation locations and prevailing tracks may have contributed to the changes in the proportion of the intense hurricanes over the past 30 yr. The authors suggest that the changes in the formation locations and prevailing tracks have a profound impact on the basinwide tropical cyclone intensity. Thus, how the atmospheric circulation in the tropical cyclone basins responds to the global warming may be a critical factor in understanding the impacts of global warming on tropical cyclone intensity.


2020 ◽  
Vol 148 (10) ◽  
pp. 4035-4059
Author(s):  
Kevin C. Prince ◽  
Clark Evans

AbstractWhile it is understood that a recurving tropical cyclone (TC) that interacts with the midlatitude flow can cause large changes to the midlatitude flow pattern, it is much less understood if, and how, such events could impact a downstream tropical cyclone. Here, an indirect TC interaction is defined as one in which a primary TC perturbs the downstream midlatitude waveguide within one synoptic-scale wavelength of a secondary TC. In this study, a climatology and composite analysis using ERA-Interim reanalysis data is completed for all indirect interactions occurring between two tropical and/or subtropical cyclones in the North Atlantic and western North Pacific basins between 1989 and 2018. In all, 26 cases are identified in the North Atlantic and 56 cases are identified in the western North Pacific. The composite-mean interaction between a primary TC and upstream trough amplifies the immediate downstream ridge, increasing the tropospheric-deep vertical wind shear on its poleward and, in the western North Pacific, eastern, and equatorward flanks. An amplified downstream trough is detectable farther downstream in the western North Pacific 1–2 days after interaction onset; however, the same is not true in the North Atlantic, in which some cases exhibit anticyclonic Rossby wave breaking of the immediate downstream ridge. Secondary TCs that weaken following the indirect-interaction events are primarily located along the gradient between the downstream ridge and trough (North Atlantic) or at high latitudes (western North Pacific); those that strengthen are primarily located equatorward of the downstream ridge, particularly in the western North Pacific.


Sign in / Sign up

Export Citation Format

Share Document