Otologic Histopathology of Fabry's Disease

1989 ◽  
Vol 98 (5) ◽  
pp. 359-363 ◽  
Author(s):  
Patricia A. Schachern ◽  
Michael M. Paparella ◽  
Donald A. Shea ◽  
Tae H. Yoon

Fabry's disease is a rare progressive X-linked recessive disorder of glycosphingolipid metabolism. The accumulation of glycosphingolipids occurs in virtually all areas of the body, including the endothelial, perithelial, and smooth-muscle cells of blood vessels, the ganglion cells of the autonomic nervous system, and the glomeruli and tubules of the kidney. Although otologic symptoms have been described in these patients, to our knowledge there have been no temporal bone histopathologic reports. We describe the clinical histories, audiometric results, and temporal bone findings of two patients with this rare disorder. Both patients demonstrated a bilateral sloping sensorineural hearing loss audiometrically. Middle ear findings of seropurulent effusions and hyperplastic mucosa were seen in all four temporal bones. Strial and spiral ligament atrophy in all turns, and hair cell loss mainly in the basal turns, were also common findings. The number of spiral ganglion cells was reduced in all temporal bones; however, evidence of glycosphingolipid accumulation was not observed in the spiral ganglia.

1974 ◽  
Vol 83 (2) ◽  
pp. 202-215 ◽  
Author(s):  
Robert A. Schindler ◽  
Michael M. Merzenich

The temporal bones of ten cats implanted with intracochlear electrodes for three to 117 weeks were stained with hematoxylin and eosin and examined with light microscopy. The electrodes were embedded in Silastic® which was molded to fill the most basal 9 mm of the scala tympani. They were inserted directly into the scala through the round window. Among our observations were the following: 1) All or nearly all hair cells were lost in the basal coil during the first several weeks after implantation. Some, but not all, supporting cells were also lost. There was extensive hair cell loss in the middle and apical turns, although some hair cells were seen there in all examined cats. 2) There was evidence of degeneration of spiral ganglion cells in the basal cochlea in several animals, but most primary auditory neurons including (with two exceptions) most of those in the region directly over the electrode, survived implantation in every cat. The radial nerve fibers of the spiral ganglion cells also survived long-term implantation. The functional viability of remaining spiral ganglion cells was confirmed in acute neurophysiological experiments conducted just before the animals were sacrificed. 3) More severe degeneration was seen in two cats in which the electrode perforated the basilar partition. In these animals, there was loss of many spiral ganglion cells, and evidence of new bone growth in the region of the perforation. 4) The appearance of the stria vascularis and spiral ligament in some implanted animals paralleled their descriptions following occlusion of the cochlear vein. 5) Connective tissue formed around the electrode surfaces, apparently displacing perilymph and sealing the electrode into the scala tympani. There was no evidence of perilymph fistula in any animal. 6) There was little evidence of progressive degeneration of the organ of Corti or spiral ganglion from three to 34 weeks after implantation. Some of the implications and limitations of these findings are discussed.


1979 ◽  
Vol 88 (5) ◽  
pp. 630-636 ◽  
Author(s):  
Takehiko Harada ◽  
Isamu Sando ◽  
Eugene N. Myers

This paper reports on a patient who survived an attack of cryptococcal meningitis eight years prior to his death. A bilateral sensorineural hearing loss had been noted a short time before the patient was admitted to the hospital, and was the only complication after he recovered from the disease. Histopathologic study of the temporal bones showed a similar pattern of pathology in both ears, the most striking finding being a severe loss of spiral ganglion cells in Rosenthal's canal, and of cochlear nerve fibers in the osseous spiral lamina and internal auditory meatus. The vestibular nerve was mostly free from pathology. The organ of Corti was atrophic but the hair cell population appeared to be almost normal. A slight number of cryp-tococci were observed in limited areas of the cochlear and the saccular nerves in the internal auditory meatus. The severe pathology of the cochlear nerve was compatible with audiologic evaluations, which pointed to a retrocochlear lesion. Thus, this case demonstrates some characteristic aspects of cryptococcal infection of the temporal bone: The primary site of invasion was the cochlear nerve in the internal auditory meatus and the modiolus, leading to the loss of ganglion cells and nerve fibers, while the vestibular nerve appears to have been resistant to infection.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P195-P196
Author(s):  
Yu-Lan M. Ying ◽  
Carey D Balaban

Problem Manganese superoxide dismutase (Mn SOD2) is a key metabolic anti-oxidant enzyme of the superoxide dismutase family for detoxifying the free radical cascade inside the mitochondria of the cochlea via activation of downstream uncoupling proteins. Copper/zinc superoxide dismutase (Cu/Zn SOD1) is localized in the cytoplasm. This study examined whether the pattern of expression of these SODs in the cochlea is correlated with the differential cellular vulnerability found in basal versus apical turn of the cochlea. Methods Immunohistochemical methods were used to identify the distribution of Mn SOD2 and Cu/Zn SOD1 in paraffin embedded sections of paraformaldehyde fixed formic acid decalcified temporal bones from mice, rats, and macaques; and special archival celloidin-embedded human temporal bone sections. Results In mice, rats and macaques, both the proportion of Mn SOD2 immunopositive type 1 spiral ganglion cells and the intensity of immunoreactivity were elevated near the cochlear apex. Strongly stained Mn SOD2 type 1 spiral ganglion cells were also observed in archival human temporal bone sections. In contrast, the Cu/Zn SOD1 immunopositive type 1 spiral ganglion cells were distributed identically across cochlear turns in rats and macaques. Conclusion These findings suggest that spiral ganglion cellular responses to ROS exposure may vary along the cochlear spiral, with a lower response capacity in the basal turn. Significance Hair cells and spiral ganglion cells appear to be more vulnerable to ototoxins at the base of the cochlea than at the apex. Our data raises the general hypothesis that a lower Mn SOD2 anti-oxidative capacity at the cochlear base could contribute to the high frequency hearing loss seen in presbycusis and ototoxin-induced hearing loss. The conservative pattern of Mn SOD2 immunostaining across species further suggests that it may be a fundamental mechanism in ROS metabolism and signaling. Support PA Lions Hearing Research Foundation, American Otologic Society Research Fellowship.


2005 ◽  
Vol 133 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Seckin O. Ulualp ◽  
Charles G. Wright ◽  
Peter S. Roland

Objective: To evaluate temporal bone histopathology in infants with congenital heart defects (CHD). Study Design and Setting: A retrospective review of our temporal bone collection was conducted to identify temporal bones acquired from infants with CHD. Subjects were divided into nonsyndromic and syndromic CHD groups. The presence of temporal bone abnormalities and the incidence of abnormalities that may result in hearing impairment were determined. Results: Thirty-eight temporal bones obtained from 16 infants with nonsyndromic CHD and 4 with syndromic CHD were evaluated. Nonsyndromic CHD cases had abnormalities such as a mesenchymal remnant, malformed stapes, persistent stapedial artery, shallow round window, dehiscent facial nerve canal, short cochlea, strial basophilic deposits, deformity of the spiral ligament, bulging Reissner's membrane, hypoplastic lateral semicircular canal, and cupular deposits. Syndromic CHD cases had abnormalities including narrow round window niche, facial canal dehiscence, strial basophilic deposits and cysts, and outer hair cell loss. Middle and inner ear abnormalities that may impair hearing were observed in 6 subjects with nonsyndromic CHD and in 1 subject with syndromic CHD. Conclusions: A wide variety of temporal bone defects were documented in infants with CHD. Congenital middle and inner ear abnormalities should be anticipated in the hearing assessment and otologic surgery of infants with CHD.


2021 ◽  
Vol 11 (2) ◽  
pp. 220-226
Author(s):  
Yew-Song Cheng ◽  
Mario A. Svirsky

The presence of spiral ganglion cells (SGCs) is widely accepted to be a prerequisite for successful speech perception with a cochlear implant (CI), because SGCs provide the only known conduit between the implant electrode and the central auditory system. By extension, it has been hypothesized that the number of SGCs might be an important factor in CI outcomes. An impressive body of work has been published on findings from the laborious process of collecting temporal bones from CI users and counting the number of SGCs to correlate those numbers with speech perception scores, but the findings thus far have been conflicting. We performed a meta-analysis of all published studies with the hope that combining existing data may help us reach a more definitive conclusion about the relationship between SGC count and speech perception scores in adults.


1978 ◽  
Vol 87 (3) ◽  
pp. 399-403 ◽  
Author(s):  
H. K. Chandra Sekhar ◽  
Nobuhtro Toktta ◽  
S. Alexic ◽  
M. Sachs ◽  
John F. Daly

— The temporal bone findings in a case of hemifacial microsomia are described with photographs. The right facial hypoplasia was associated with anophthalmia and microtia on the same side. The right petrous bone was hypoplastic and showed total superior dehiscence of the internal acoustic meatus. The otic capsule was deformed with an underdeveloped cochlear modiolus grossly deficient in spiral ganglion population. The spiralling cochlear shell showed partial deficiency of the interscalar septum between the middle and apical coils. The cochlear duct was shorter than that on the normal side; the organ of Corti however was normal. The vestibular system did not show any structural abnormality except for the degeneration and reduction of the Scarpa's ganglion cells and nerve fibers. An additional interesting fact was that the facial nerve was totally absent in the temporal bone except for its nervus intermedius component.


1998 ◽  
Vol 77 (8) ◽  
pp. 662-668
Author(s):  
Yukiko Iino ◽  
Taku Komiya ◽  
Tomoko Fujii ◽  
Yoshinori Nakamoto ◽  
Satoru Koyama ◽  
...  

The temporal bones of two patients with profound bilateral deafness from infancy were studied immunohistochemically, using a neurofilament protein antibody to detect the cochlear neuronal elements. One patient exhibited Mondini dysplasia of the inner ear, with the organ of Corti almost completely deteriorated. The other patient is the first reported case involving complete aplasia of the organ of Corti in all turns. In both cases, the immunohistochemical staining clearly revealed a severe reduction in the number of afferent neurons, such as dendrites, spiral ganglion cells and cochlear axons. The number of efferent spiral bundles in the osseous spiral lamina and intraganglionic portion also decreased in parallel with the reduction in the number of cochlear afferent neurons. Our results are inconsistent with previously reported cases of presbycusis and acquired deafness induced by the measles virus, in which efferent neurons were preserved while afferent neurons degenerated. The loss of both the efferent and afferent neurons might be characteristics of congenital deafness.


1991 ◽  
Vol 105 (8) ◽  
pp. 621-624 ◽  
Author(s):  
Christopher deSouza ◽  
Michael M. Paparella ◽  
Pat Schachern ◽  
Tae H. Yoon

AbstractOssification of the inner ear is the result of multifactorial pathogeneses, such as infection or malignant infiltration, and otosclerosis. Ossification of the innerear spaces is a well documented sequela of suppurative labyrinthitis. In this study of human temporal bones, sections from 14 patients (28 temporal bones)were studied. In additionto the osseous tissue within the inner ear, findings included neoplasms, otosclerosis, otitis media, trauma, and Fabry's disease. We have attempted to correlate these conditions and their influence on the formation of osseous tissue within the spaces of the inner ear. Tympanogenic infection and vascular compromise were found to play an important role in ossification. The scala tympani ofthe basal turn of the cochlea was frequently the site involved.


1989 ◽  
Vol 98 (6) ◽  
pp. 411-416 ◽  
Author(s):  
Joseph B. Nadol ◽  
Yi-Shyang Young ◽  
Robert J. Glynn

Ninety-three temporal bones from 66 patients who were profoundly deaf during life were reconstructed by analysis of serial light microscopic sections. The correlations of total and segmental spiral ganglion cell counts with age, duration of hearing loss and profound deafness, and cause of hearing loss were evaluated. Bivariate analysis demonstrated that total spiral ganglion cell count tended to be lower in older than in younger deaf individuals and lower with longer duration of hearing loss and total deafness. However, multiple regression analysis demonstrated that the cause of hearing loss was the single most significant determinant of total spiral ganglion cell count. Patients with deafness due to aminoglycoside toxicity or sudden idiopathic deafness had the highest residual spiral ganglion cell count and patients with deafness due to presumptive postnatal viral labyrinthitis, bacterial labyrinthitis, and congenital or genetic causes had the lowest numbers of residual spiral ganglion cells.


Sign in / Sign up

Export Citation Format

Share Document