Cochlear Neuronal Loss as Determined by Use of a Neurofilament Protein Antibody in Cases of Bilateral Profound Deafness

1998 ◽  
Vol 77 (8) ◽  
pp. 662-668
Author(s):  
Yukiko Iino ◽  
Taku Komiya ◽  
Tomoko Fujii ◽  
Yoshinori Nakamoto ◽  
Satoru Koyama ◽  
...  

The temporal bones of two patients with profound bilateral deafness from infancy were studied immunohistochemically, using a neurofilament protein antibody to detect the cochlear neuronal elements. One patient exhibited Mondini dysplasia of the inner ear, with the organ of Corti almost completely deteriorated. The other patient is the first reported case involving complete aplasia of the organ of Corti in all turns. In both cases, the immunohistochemical staining clearly revealed a severe reduction in the number of afferent neurons, such as dendrites, spiral ganglion cells and cochlear axons. The number of efferent spiral bundles in the osseous spiral lamina and intraganglionic portion also decreased in parallel with the reduction in the number of cochlear afferent neurons. Our results are inconsistent with previously reported cases of presbycusis and acquired deafness induced by the measles virus, in which efferent neurons were preserved while afferent neurons degenerated. The loss of both the efferent and afferent neurons might be characteristics of congenital deafness.

1979 ◽  
Vol 88 (5) ◽  
pp. 630-636 ◽  
Author(s):  
Takehiko Harada ◽  
Isamu Sando ◽  
Eugene N. Myers

This paper reports on a patient who survived an attack of cryptococcal meningitis eight years prior to his death. A bilateral sensorineural hearing loss had been noted a short time before the patient was admitted to the hospital, and was the only complication after he recovered from the disease. Histopathologic study of the temporal bones showed a similar pattern of pathology in both ears, the most striking finding being a severe loss of spiral ganglion cells in Rosenthal's canal, and of cochlear nerve fibers in the osseous spiral lamina and internal auditory meatus. The vestibular nerve was mostly free from pathology. The organ of Corti was atrophic but the hair cell population appeared to be almost normal. A slight number of cryp-tococci were observed in limited areas of the cochlear and the saccular nerves in the internal auditory meatus. The severe pathology of the cochlear nerve was compatible with audiologic evaluations, which pointed to a retrocochlear lesion. Thus, this case demonstrates some characteristic aspects of cryptococcal infection of the temporal bone: The primary site of invasion was the cochlear nerve in the internal auditory meatus and the modiolus, leading to the loss of ganglion cells and nerve fibers, while the vestibular nerve appears to have been resistant to infection.


2021 ◽  
Vol 11 (2) ◽  
pp. 220-226
Author(s):  
Yew-Song Cheng ◽  
Mario A. Svirsky

The presence of spiral ganglion cells (SGCs) is widely accepted to be a prerequisite for successful speech perception with a cochlear implant (CI), because SGCs provide the only known conduit between the implant electrode and the central auditory system. By extension, it has been hypothesized that the number of SGCs might be an important factor in CI outcomes. An impressive body of work has been published on findings from the laborious process of collecting temporal bones from CI users and counting the number of SGCs to correlate those numbers with speech perception scores, but the findings thus far have been conflicting. We performed a meta-analysis of all published studies with the hope that combining existing data may help us reach a more definitive conclusion about the relationship between SGC count and speech perception scores in adults.


1989 ◽  
Vol 98 (5) ◽  
pp. 359-363 ◽  
Author(s):  
Patricia A. Schachern ◽  
Michael M. Paparella ◽  
Donald A. Shea ◽  
Tae H. Yoon

Fabry's disease is a rare progressive X-linked recessive disorder of glycosphingolipid metabolism. The accumulation of glycosphingolipids occurs in virtually all areas of the body, including the endothelial, perithelial, and smooth-muscle cells of blood vessels, the ganglion cells of the autonomic nervous system, and the glomeruli and tubules of the kidney. Although otologic symptoms have been described in these patients, to our knowledge there have been no temporal bone histopathologic reports. We describe the clinical histories, audiometric results, and temporal bone findings of two patients with this rare disorder. Both patients demonstrated a bilateral sloping sensorineural hearing loss audiometrically. Middle ear findings of seropurulent effusions and hyperplastic mucosa were seen in all four temporal bones. Strial and spiral ligament atrophy in all turns, and hair cell loss mainly in the basal turns, were also common findings. The number of spiral ganglion cells was reduced in all temporal bones; however, evidence of glycosphingolipid accumulation was not observed in the spiral ganglia.


1978 ◽  
Vol 87 (3) ◽  
pp. 399-403 ◽  
Author(s):  
H. K. Chandra Sekhar ◽  
Nobuhtro Toktta ◽  
S. Alexic ◽  
M. Sachs ◽  
John F. Daly

— The temporal bone findings in a case of hemifacial microsomia are described with photographs. The right facial hypoplasia was associated with anophthalmia and microtia on the same side. The right petrous bone was hypoplastic and showed total superior dehiscence of the internal acoustic meatus. The otic capsule was deformed with an underdeveloped cochlear modiolus grossly deficient in spiral ganglion population. The spiralling cochlear shell showed partial deficiency of the interscalar septum between the middle and apical coils. The cochlear duct was shorter than that on the normal side; the organ of Corti however was normal. The vestibular system did not show any structural abnormality except for the degeneration and reduction of the Scarpa's ganglion cells and nerve fibers. An additional interesting fact was that the facial nerve was totally absent in the temporal bone except for its nervus intermedius component.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 399 ◽  
Author(s):  
Jhang Ho Pak ◽  
Junyeong Yi ◽  
Sujin Ryu ◽  
In Ki Kim ◽  
Jung-Woong Kim ◽  
...  

Free radicals formed in the inner ear in response to high-intensity noise, are regarded as detrimental factors for noise-induced hearing loss (NIHL). We reported previously that intraperitoneal injection of cobalt chloride attenuated the loss of sensory hair cells and NIHL in mice. The present study was designed to understand the preconditioning effect of CoCl2 on oxidative stress-mediated cytotoxicity. Treatment of auditory cells with CoCl2 promoted cell proliferation, with increases in the expressions of two redox-active transcription factors (hypoxia-inducible factor 1α, HIF-1α, nuclear factor erythroid 2-related factor 2; Nrf-2) and an antioxidant enzyme (peroxiredoxin 6, Prdx6). Hydrogen peroxide treatment resulted in the induction of cell death and reduction of these protein expressions, reversed by pretreatment with CoCl2. Knockdown of HIF-1α or Nrf-2 attenuated the preconditioning effect of CoCl2. Luciferase reporter analysis with a Prdx6 promoter revealed transactivation of Prdx6 expression by HIF-1α and Nrf-2. The intense immunoreactivities of HIF-1α, Nrf-2, and Prdx6 in the organ of Corti (OC), spiral ganglion cells (SGC), and stria vascularis (SV) of the cochlea in CoCl2-injected mice suggested CoCl2-induced activation of HIF-1α, Nrf-2, and Prdx6 in vivo. Therefore, we revealed that the protective effect of CoCl2 is achieved through distinctive signaling mechanisms involving HIF-1α, Nrf-2, and Prdx6.


1989 ◽  
Vol 98 (6) ◽  
pp. 411-416 ◽  
Author(s):  
Joseph B. Nadol ◽  
Yi-Shyang Young ◽  
Robert J. Glynn

Ninety-three temporal bones from 66 patients who were profoundly deaf during life were reconstructed by analysis of serial light microscopic sections. The correlations of total and segmental spiral ganglion cell counts with age, duration of hearing loss and profound deafness, and cause of hearing loss were evaluated. Bivariate analysis demonstrated that total spiral ganglion cell count tended to be lower in older than in younger deaf individuals and lower with longer duration of hearing loss and total deafness. However, multiple regression analysis demonstrated that the cause of hearing loss was the single most significant determinant of total spiral ganglion cell count. Patients with deafness due to aminoglycoside toxicity or sudden idiopathic deafness had the highest residual spiral ganglion cell count and patients with deafness due to presumptive postnatal viral labyrinthitis, bacterial labyrinthitis, and congenital or genetic causes had the lowest numbers of residual spiral ganglion cells.


2005 ◽  
Vol 114 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Steven P. Tinling ◽  
Vishad Nabili ◽  
Hilary A. Brodie

Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.


2000 ◽  
Vol 93 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Tetsuji Sekiya ◽  
Norihito Shimamura ◽  
Toru Hatayama ◽  
Shigeharu Suzuki

Object. Cochlear neurons are inevitably exposed to traumatic stress during surgical removal of an acoustic neuroma; that event is an important cause of postoperative cochlear neuronal degeneration, with subsequent loss of spiral ganglion cells (SGCs). The object of this study was to investigate whether preoperative pharmacological treatment can enhance the resistance of cochlear neurons to the traumatic stress of surgery.Methods. Cochlear neuronal degeneration was induced in 17 rats by controlled compression of the cerebellopontine angle portion of the cochlear nerve. Dizocilpine maleate (MK-801; 10 mg/kg), an N-methyl-d-aspartate (NMDA) antagonist, was administered intraperitoneally to six of the 17 rats 30 minutes before compression occurred. Two weeks after compression, each rat was killed, and the numbers of SGCs in histological preparations of temporal bones were counted.Conclusions. Spiral ganglion cells were more numerous in rats administered dizocilpine maleate (p < 0.03) than in rats that did not receive treatment, indicating that receptor-mediated glutamate neurotoxicity may participate in the pathogenesis of trauma-induced cochlear neuron death and that administration of an NMDA antagonist before surgery may protect the nerve from injury leading to hearing loss.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P155-P155
Author(s):  
Helen Xu ◽  
Natasha Pollak ◽  
Sebahattin Cureoglu ◽  
Michael M Paparella

Objectives 1) To exam the histopathology of multichannel cochlear implant temporal bones. 2) To evaluate the relationship of residual spiral ganglion cell counts to clinical hearing performance. Methods 8 temporal bones from 4 cochlear implant patients were examined histologically. Paired comparisons were made between implanted and nonimplanted temporal bones. Clinical performance data was obtained from patient charts. Results There were varying amounts of inflammation (fibrosis and ossification) in the basal turn of the cochlear in all implanted temporal bones. Trauma to the facial nerve at facial recess site was noticed in 1 case. Compared with nonimplanted ears, 2 implanted bones with less than 10-year duration of implantation had no significant changes of spiral ganglion cell population. One case with prolong implant duration (15 years) showed about 36% decrease of spiral ganglion cells at the implanted site. The case with best speech recognition (89% with CID sentence) had the highest residual spiral ganglion cells (30% of normal spiral ganglion cell population). 2 cases with poor clinical performance (< 10% with CID sentence) had the residual spiral ganglion cells at 11% and 22%. The case with moderate clinical performance (30% with CID sentence) had 14% of normal spiral ganglion cell population. Surviving dendrites varied from 5% to 30% among 4 cases with no relationship to clinical performance. Conclusions Our findings suggest prolonged implantation may affect spiral ganglion cell population. There is no reverse relationship between residual spiral ganglion cells in implanted temporal bones to clinical speech performance observed from our limited cases.


Sign in / Sign up

Export Citation Format

Share Document