Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers

2016 ◽  
Vol 70 (10) ◽  
pp. 1649-1654 ◽  
Author(s):  
Lu Huang ◽  
Yi-Ting Chen ◽  
Yan-Xia Li ◽  
Li-Shuang Yu

Two chiral ionic liquids (ILs), namely 1-ethyl-3-methylimidazole l-tartrate (EMIML-Tar) and 1-ethyl-3-methylimidazole l-lactate (EMIML-Lac), were used to modify gold nanoparticles (AuNPs) for chiral recognition of amino acid enantiomers. Transmission electron microscopy, infrared spectroscopy, ultraviolet-visible spectroscopy, and capillary electrophoresis were used for the characterization of chiral IL-modified AuNPs. Meanwhile, the performance of l-tartaric acid and l-lactic acid as modifiers was investigated to make a comparison. The chiral recognition mechanism is further discussed.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1791
Author(s):  
Marco Vizcarra-Pacheco ◽  
María Ley-Flores ◽  
Ana Mizrahim Matrecitos-Burruel ◽  
Ricardo López-Esparza ◽  
Daniel Fernández-Quiroz ◽  
...  

One of the main challenges facing materials science today is the synthesis of new biodegradable and biocompatible materials capable of improving existing ones. This work focused on the synthesis of new biomaterials from the bioconjugation of oleic acid with L-cysteine using carbodiimide. The resulting reaction leads to amide bonds between the carboxylic acid of oleic acid and the primary amine of L-cysteine. The formation of the bioconjugate was corroborated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and nuclear magnetic resonance (NMR). In these techniques, the development of new materials with marked differences with the precursors was confirmed. Furthermore, NMR has elucidated a surfactant structure, with a hydrophilic part and a hydrophobic section. Ultraviolet-visible spectroscopy (UV-Vis) was used to determine the critical micellar concentration (CMC) of the bioconjugate. Subsequently, light diffraction (DLS) was used to analyze the size of the resulting self-assembled structures. Finally, transmission electron microscopy (TEM) was obtained, where the shape and size of the self-assembled structures were appreciated.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


2021 ◽  
Vol 25 (7) ◽  
pp. 1-7
Author(s):  
Fellyzra Elvya Pojol ◽  
Buong Woei Chieng ◽  
Keat Khim Ong ◽  
Rashid Jahwarhar Izuan Abd ◽  
Mohd Junaedy Osman ◽  
...  

Citrate reduction of gold (III) chloride trihydrate (HAuCl4) is commonly used method to synthesise citrate-capped gold nanoparticles (cit-AuNPs). In this study, the sequence of reagents addition was modified (“inverse” method) to synthesise smaller size of cit-AuNPs than the standard Turkevich method (“direct” method). Ultraviolet-visible spectroscopy (UV-vis) and field emission transmission electron microscopy (FETEM) confirmed the formation of cit-AuNPs. The cit-AuNPs synthesized using “inverse” method are smaller in size (14.0 ± 3.03 nm) with uniform spherical shape compared to “direct” method (23.5 ± 7.52 nm). Smaller particles size of cit-AuNPs provide higher efficiency and sensitivity for detection of methylphosphonic acid (MPA) via colorimetric incorporated with image processing with a linear range from 2.5 to 12.5 mM and a low detection limit of 6.28 mM at shorter detection period (24 to 30 s).


2015 ◽  
Vol 1132 ◽  
pp. 19-35
Author(s):  
S.O. Dozie-Nwachukwu ◽  
J.D. Obayemi ◽  
Y. Danyo ◽  
G. Etuk-Udo ◽  
N. Anuku ◽  
...  

This paper presents the biosynthesis of gold nanoparticles from the bacteria, Serratia marcescens.The intra-and extra-cellular synthesis of gold nanoparticles is shown to occur over a range of pH and incubation times in cell-free exracts and biomass ofserratia marcescensthat were reacted with 2.5mM Tetrachloroauric acid (HAuCl4). The formation of gold nanoparticles was identified initially via color changes from yellow auro-chloride to shades of red or purple in gold nanoparticle solutions. UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDS), Helium Ion Microscopy (HIM) and Dynamic Light Scattering (DLS) were also used to characterize gold nanoparticles produced within a range of pH conditions. The results show clearly that the production of gold nanoparticles from cell-free extracts require shorter times than the production of gold nanoparticles from the biomass.


2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


2013 ◽  
Vol 313-314 ◽  
pp. 232-236
Author(s):  
Dan Zhang

Activated carbon supported gold nanoparticles (Au/C) were prepared by a chemical reduction process using NaBH4as a reducing agent. The characterization of transmission electron microscope indicated that the Au nanoparticles (AuNPs) in the Au/C catalyst were highly well dispersed on the carbon support. The catalytic activity of the Au/C catalyst for the methanol electrooxidation (MEO) was investigated by the cyclic voltammetry (CV). The results displayed that the Au/C catalyst exhibited a favorable catalytic activity towards the MEO in alkaline solution. Moreover, the competitive adsorption between OH-and CH3OH on the surface of the AuNPs in the Au/C catalyst existed in the course of the MEO. Based on this competitive adsorption, the mechanism of the MEO on the Au/C catalyst was further investigated.


2018 ◽  
Vol 55 (1B) ◽  
pp. 13
Author(s):  
Vo K. D. N.

In this paper, gold nanoparticles (AuNPs) were synthesized in a single and efficient procedure by e–beam and γ–irradiation using chitosan as a stabilizing agent. The investigations on synthesis of AuNPs under ionizing radiation by studying the influence of initial conditions of the preparation of Au(III)–chitosan solutions prior to irradiation on the nucleation process and on the morphological characteristic of the formed nanoparticles. The results of UV–vis absorption spectroscopy, transmission electron microscopy indicated that spherical well–dispersed gold nanoparticles ranging from 5 to 10 nm were elaborated, depending on the irradiation dose, the dose rate and the [GLA]/[Au(III)] ratio (GLA: glucosamine units). Furthermore, we also reported the application of the synthesized gold nanoparticles as catalyst in the reduction of 4–nitrophenol (4–NP) to 4–aminophenol (4–AP) by excess sodium borohydride.


2020 ◽  
Vol 117 (12) ◽  
pp. 6866-6874 ◽  
Author(s):  
Urszula Cendrowska ◽  
Paulo Jacob Silva ◽  
Nadine Ait-Bouziad ◽  
Marie Müller ◽  
Zekiye Pelin Guven ◽  
...  

Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicities and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the development of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) that efficiently label the edges of synthetic, recombinant, and native amyloid fibrils derived from different amyloidogenic proteins. We demonstrate that these NPs represent powerful tools for assessing amyloid morphological polymorphism, using cryogenic transmission electron microscopy (cryo-EM). The NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including transmission electron microscopy with use of the negative stain or cryo-EM imaging. The use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of a patient with Alzheimer’s disease, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain amyloidosis, revealed a high degree of homogeneity across the fibrils derived from human tissue in comparison with fibrils aggregated in vitro. These findings are consistent with, and strongly support, the emerging view that the physiologic milieu is a key determinant of amyloid fibril strains. Together, these advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM, but also pave the way to elucidate the structural basis of amyloid strains and toxicity, and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.


Sign in / Sign up

Export Citation Format

Share Document