Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector

2016 ◽  
Vol 71 (5) ◽  
pp. 988-995 ◽  
Author(s):  
Patrick D. Barnett ◽  
S. Michael Angel

A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm−1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone’s built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

2019 ◽  
Author(s):  
Jin-Sun Jeong ◽  
Nan-Sim Pang ◽  
Yiseul Choi ◽  
Kyeong-Mee Park ◽  
Taekbin Kim ◽  
...  

BACKGROUND High-quality photos are critical for the remote diagnosis of dental trauma and thus are beneficial to the prognosis. The quality of the images obtained using a cell phone depends on the level of dental and photography knowledge of the person who is taking the photos. OBJECTIVE This study aimed to determine the efficacy of photography education in improving images used for the remote diagnosis of dental trauma. METHODS The subjects comprised 30 laypeople and 30 dentists who were randomly assigned to 15 subgroups with 2 subjects in each. Each subject was asked to take photos of their own anterior teeth and those of their partner on the assumption that an accident occurred using both an iPhone 4s and iPhone 6. Education about how to take an appropriate photo of the anterior teeth for teleconsultation purposes was then provided, after which photos were taken again. Photos were assessed by a dentist for their usefulness in diagnosis. RESULTS This study analyzed 965 photos: 441 taken by laypeople and 524 taken by dentists. Photos taken after providing education had significantly higher scores for all assessment items than those taken before education (<i>P</i>&lt;.05). The scores were also significantly higher for photos taken using the rear camera than those taken using the front camera (<i>P</i>&lt;.02). The iPhone 6 did not have overwhelming advantages. The photos taken by dentists had significantly higher scores than those taken by laypeople for most of the evaluated items. CONCLUSIONS Both laypeople and dentists might find photography education useful for when they are taking photos to be used in teleconsultations. The type of cell phone does not significantly affect the usefulness of such photos.


1991 ◽  
Vol 9 (1) ◽  
pp. 158-159 ◽  
Author(s):  
B. D. Carter ◽  
M. C. B. Ashley

AbstractWe describe the application of Peltier effect cooling to charge coupled device (CCD) detectors. We are developing this technique to produce a CCD camera which requires low maintenance, yet has sufficiently small dark-current for long exposure imaging. This camera will be used in an automated imaging telescope at Siding Spring Observatory. The design principles used to maximise cooling of the detector, and hence minimise dark-current, are discussed. A small dark-current can be obtained only if great care is taken to reduce or eliminate convective, conductive and radiative heating of the chip. In addition, a path of high thermal conductivity must be provided for the heat removed from the CCD. A recent laboratory test of our cooling system demonstrates that careful design can lead to sufficiently low CCD dark-current for many astronomical applications.


10.2196/15152 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e15152
Author(s):  
Jin-Sun Jeong ◽  
Nan-Sim Pang ◽  
Yiseul Choi ◽  
Kyeong-Mee Park ◽  
Taekbin Kim ◽  
...  

Background High-quality photos are critical for the remote diagnosis of dental trauma and thus are beneficial to the prognosis. The quality of the images obtained using a cell phone depends on the level of dental and photography knowledge of the person who is taking the photos. Objective This study aimed to determine the efficacy of photography education in improving images used for the remote diagnosis of dental trauma. Methods The subjects comprised 30 laypeople and 30 dentists who were randomly assigned to 15 subgroups with 2 subjects in each. Each subject was asked to take photos of their own anterior teeth and those of their partner on the assumption that an accident occurred using both an iPhone 4s and iPhone 6. Education about how to take an appropriate photo of the anterior teeth for teleconsultation purposes was then provided, after which photos were taken again. Photos were assessed by a dentist for their usefulness in diagnosis. Results This study analyzed 965 photos: 441 taken by laypeople and 524 taken by dentists. Photos taken after providing education had significantly higher scores for all assessment items than those taken before education (P<.05). The scores were also significantly higher for photos taken using the rear camera than those taken using the front camera (P<.02). The iPhone 6 did not have overwhelming advantages. The photos taken by dentists had significantly higher scores than those taken by laypeople for most of the evaluated items. Conclusions Both laypeople and dentists might find photography education useful for when they are taking photos to be used in teleconsultations. The type of cell phone does not significantly affect the usefulness of such photos.


2021 ◽  
Vol 11 (8) ◽  
pp. 3392
Author(s):  
Xinjun Wan ◽  
Xuechen Tao

Application of cell-phone-based microscopes has been hindered by limitations such as inferior image quality, fixed magnification and inconvenient operation. In this paper, we propose a reverse cell phone lens-based miniature microscope with a configurable magnification ratio. By switching the objectives of three camera lens and applying the digital zooming function of the cell phone, a cell phone microscope is built with the continuously configurable magnification ratio between 0.8×–11.5×. At the same time, the miniature microscope can capture high-quality microscopic images with a maximum resolution of up to 575 lp/mm and a maximum field of view (FOV) of up to 7213 × 5443 um. Furthermore, by moving the tube lens module of the microscope out of the cell phone body, the built miniature microscope is as compact as a <20 mm side length cube, improving operational experience profoundly. The proposed scheme marks a big step forward in terms of the imaging performance and user operational convenience for cell phone microscopes.


2011 ◽  
Vol 20 (1) ◽  
pp. 34-37 ◽  
Author(s):  
David Chapple

Abstract Over the past 20 years, there have been many advances in the computer industry as well as in augmentative and alternative communication (AAC) devices. Computers are becoming more compact and have multiple purposes, such as the iPhone, which is a cell phone, mp3 player, and an Internet browser. AAC devices also have evolved to become multi-purpose devices; the most sophisticated devices have functionality similar to the iPhone and iPod. Recently, the idea of having the iPhone and iPad as a communication device was initiated with the development of language applications specifically for this format. It might be true that this idea could become the future of AAC devices; however, there are major access issues to overcome before the idea is a reality. This article will chronicle advancements in AAC devices, specifically on access methods, throughout the years, towards the transition to handheld devices. The newest technologies hold much promise with both features and affordability factors being highly attractive. Yet, these technologies must be made to incorporate alternate access if they are to meet their fullest potential as AAC tools.


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


Sign in / Sign up

Export Citation Format

Share Document