Human Prostatic Acid Phosphatase: Properties of the Native Enzyme, and the Enzyme-Antibody Complex

Author(s):  
Renze Bais ◽  
Anne Huxtable ◽  
John B Edwards

Acid phosphatase purified from human prostatic tissue was shown to be homogeneous by polyacrylamide gel electrophoresis and N-terminal amino acid analysis. However, isoelectric focusing revealed a large number of isoenzymes which were reduced to four by digestion with neuraminidase. It is suggested that the patterns observed are due to differences in bound carbohydrate attached to the same protein backbone. Antiserum to the purified enzyme was produced in rabbits and reacted with the enzyme to form an enzymatically active complex of large molecular weight. This complex is more stable at high temperatures than the native enzyme. Kinetic analysis of both the enzyme and the enzyme-antibody complex demonstrated that the binding of the antibody caused no significant change to the active site of the enzyme.

1980 ◽  
Vol 189 (3) ◽  
pp. 481-489 ◽  
Author(s):  
M O Longas ◽  
T H Finlay

1. Cleavage of the human antithrombin III–thrombin complex with [14C]methoxyamine hydrochloride results in inactive thrombin and 14C-labelled antithrombin III. 2. Discontinuous polyacrylamide-gel electrophoresis of the reduced dissociation fragments of the complex in the presence of sodium dodecyl sulphate reveals two antithrombin III bands that do not resolve during electrophoresis without reduction. The heavy band has the electrophoretic mobility of the native protein. The light band has an apparent mol.wt. that is approx. 4000 less than the molecular weight of native antithrombin III. 3. Treatment of the cleavage products of the complex with carboxypeptidase B yields 1 mumol of arginine, a new C-terminal amino acid, per mumol of thrombin dissociated. The results indicate that during formation of the antithrombin III–thrombin complex, the inhibitor is cleaved at an arginine–X bond; this arginine residue forms a carboxylic ester with the enzyme, while the excised polypeptide remains bound through a disulphide bridge(s).


1984 ◽  
Vol 223 (3) ◽  
pp. 871-877 ◽  
Author(s):  
C L Lee ◽  
S S L Li ◽  
T M Chu

Three peptide fragments (designated II, III and IV) of human prostatic acid phosphatase (PAP) were isolated to homogeneity from a limited tryptic hydrolysate of PAP by gel filtration on Sephadex G-100, followed by chromatography on DEAE-cellulose and Sephadex G-75. The homogeneity was confirmed by disc poly-acrylamide-gel electrophoresis. The Mr values were 32 500, 25 000 and 11 000 as estimated by gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Immunoprecipitation study revealed that only fragment II formed an immune precipitate with anti-PAP antibodies. Fragment II exhibited 45% of maximum inhibitory activity on the reaction between PAP and goat anti-PAP IgG (immunoglobulin G) antibodies (or rabbit anti-PAP antibodies), whereas fragments III and IV demonstrated 24% (or 23%) and 29% (or 27%) inhibition respectively. A mixture of these three tryptic fragments of PAP result in 96% (for goat anti-PAP antibodies) and 94% (for rabbit anti-PAP antibodies) inhibitory activities, which were equivalent to the sum of maximum inhibitory activity of the three fragments individually. The results demonstrated that these three tryptic peptide fragments carried all the antigenic active sites of the native PAP, and suggested that the entire molecule of human PAP comprised a minimum of four distinguishable, nonoverlapping antigenic determinants. These three fragments also were shown to retain all the disulphide bonds of the native PAP, and thus were useful reagents for the elucidation of PAP molecular structure.


1989 ◽  
Vol 260 (3) ◽  
pp. 789-793 ◽  
Author(s):  
A Kispert ◽  
D J Meyer ◽  
E Lalor ◽  
B Coles ◽  
B Ketterer

A labile GSH transferase homodimer termed 11-11 was purified from rat testis by GSH-agarose affinity chromatography followed by anion-exchange f.p.l.c. The enzyme is unstable in the absence of thiol(s) and has relatively low affinity for both 1-chloro-2,4-dinitrobenzene (Km 4.4 mM) and GSH (Km(app.) 4.4mM). Its mobility on SDS/polyacrylamide-gel electrophoresis is slightly less than that of subunits 3 and 4 and its pI is 5.2. Subunit 11 has a blocked N-terminal amino acid residue, but after CNBr cleavage fragments accounting for 113 amino acid residues were sequenced and showed 65% homology with corresponding sequences in subunit 4, indicating that it is a member of the Mu family. GSH transferase 11 is a major isoenzyme in testis, epididymis, prostate and brain and present at lower concentrations in other tissues.


1975 ◽  
Author(s):  
B. E. Ly ◽  
P. Kierulf

Fibrinogen preparations with increasing contents of iodine, ranging from 0.2 to 20 atoms of iodine per molecule fibrinogen, were obtained with the ICl method. Aggregation and shortening of the thrombin clotting time occurred when the content of iodine exceeded 3 atoms per molecule.Upon the action of thrombin, the increase in N-terminal glycine, reflecting fibrin formation, was almost identical in native and iodinated fibrinogen. At visible gelation, however, decreased amounts of N-terminal glycine were found in heavily iodinated fibrinogen, thus indicating enhanced fibrin polymerization. N-terminal analysis of heavily iodinated fibrinogen demonstrated a deficiency in N-terminal tyrosine concomitantly with the apparance of a new N-terminal amino acid, identified as mono-iodo-tyrosine.Polyacrylamide gel electrophoresis at pH 8.9 revealed an increase in mobility following extensive iodination, but no shift in the isoelectric point was observed upon isofocusing.Neither clottability nor the behaviour of fibrinogen and its subunit polypeptide chains on SDS-gel electrophoresis was affected by iodination.


2009 ◽  
Vol 56 (3) ◽  
Author(s):  
Paweł Wysocki ◽  
Grazyna Płucienniczak ◽  
Jerzy Strzezek

Boar seminal vesicle protein tyrosine acid phosphatase (PTAP) and human prostatic acid phosphatase (PAP) show high affinity for protein phosphotyrosine residues. The physico-chemical and kinetic properties of the boar and human enzymes are different. The main objective of this study was to establish the nucleotide sequence of cDNA encoding boar PTAP and compare it with that of human PAP cDNA. Also, the amino-acid sequence of boar PTAP was compared with the sequence of human PAP. PTAP was isolated from boar seminal vesicle fluid and sequenced. cDNA to boar seminal vesicle RNA was synthesized, amplified by PCR, cloned in E. coli and sequenced. The obtained N-terminal amino-acid sequence of boar PTAP showed 92% identity with the N-terminal amino-acid sequence of human PAP. The determined sequence of a 354 bp nucleotide fragment (GenBank accession number: GQ184596) showed 90% identity with the corresponding sequence of human PAP. On the basis of this sequence a 118 amino acid fragment of boar PTAP was predicted. This fragment showed 89% identity with the corresponding fragment of human PAP and had a similar hydropathy profile. The compared sequences differ in terms of their isoelectric points and amino-acid composition. This may explain the differences in substrate specificity and inhibitor resistance of boar PTAP and human PAP.


1999 ◽  
Vol 65 (8) ◽  
pp. 3470-3472 ◽  
Author(s):  
Giuliano Degrassi ◽  
Lasse Uotila ◽  
Raffaella Klima ◽  
Vittorio Venturi

ABSTRACT We purified an intracellular esterase that can function as anS-formylglutathione hydrolase from the yeastSaccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50°C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized toS-formylglutathione by S. cerevisiae.


1983 ◽  
Vol 209 (1) ◽  
pp. 151-157 ◽  
Author(s):  
C J Bailey ◽  
P D Turner

Tryptophan synthase was purified from baker's yeast. The purified enzyme exhibited one band on polyacrylamide-gel electrophoresis, had no detectable N-terminal amino acid and C-terminal alanine. The amino acid composition was close to that predicted by recent studies on the DNA sequence of the structural gene for the enzyme. Kinetic parameters for the following three activities were measured: indole-serine condensation, indolylglycerol phosphate lyase and the overall reaction of serine with 1-(indol-3-yl)glycerol 3-phosphate. The Km for indole was much lower than suggested by previous investigations, and the value of 11 microM was measured by a fluorimetric assay.


1974 ◽  
Vol 143 (3) ◽  
pp. 575-586 ◽  
Author(s):  
Christopher W. Wharton

1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis.


2002 ◽  
Vol 184 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Stefan R. Kaschabek ◽  
Bernd Kuhn ◽  
Dagmar Müller ◽  
Eberhard Schmidt ◽  
Walter Reineke

ABSTRACT The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 ± 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. K m values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-Oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 ± 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. K m values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity (70 to 85%) with thiolases of different functions. The N termini of the transferase subunits showed about 30 to 35% identical amino acids with the glutaconate-CoA transferase of an anaerobic bacterium but only an identity of 25% with the respective transferases of aromatic compound-degrading organisms was found.


Sign in / Sign up

Export Citation Format

Share Document