scholarly journals Sex Steroids Regulate the Expression of Plasminogen Activator Inhibitor-1 and its mRNA in Fibroblasts Derived from Uterine Endometrium

Author(s):  
Jiro Fujimoto ◽  
Masashi Hori ◽  
Satoshi Ichigo ◽  
Teruhiko Tamaya

In order to clarify a role of stromal cells in sex steroidal neovascularization, plasminogen activator inhibitor (PAI)-1 [an inhibitor of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA)] and its messenger ribonucleic acid (mRNA) were analysed in fibroblasts derived from uterine endometrium as a model for endometrial stromal cells under the influence of sex steroids. The determinations were carried out by an enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction-Southern blotting, respectively. In the fibroblasts, either estradiol or progestogens (progesterone, medroxy progesterone acetate or 17α-hydroxyprogesterone) induced expressions of PAI-1 and its mRNA, and their combination further increased their expression by approximately twofold. PAI-1 from endometrial stromal cells under the influence of sex steroids might contribute to endometrial neovascularization through its effect on endothelial cells in endometrial vessels.

1992 ◽  
Vol 68 (05) ◽  
pp. 486-494 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Johan Selmer ◽  
Bent Lind ◽  
Sixtus Thorsen

SummaryA new assay for functional plasminogen activator inhibitor 1 (PAI-1) in plasma was developed. The assay is based on the quantitative conversion of PAI-1 to urokinase-type plasminogen activator (u-PA)-PAI-l complex the concentration of which is then determined by an ELISA employing monoclonal anti-PAI-1 as catching antibody and monoclonal anti-u-PA as detecting antibody. The assay exhibits high sensitivity, specificity, accuracy, and precision. The level of functional PAI-1, tissue-type plasminogen activator (t-PA) activity and t-PA-PAI-1 complex was measured in normal subjects and in patients with venous thromboembolism in a silent phase. Blood collection procedures and calibration of the respective assays were rigorously standardized. It was found that the patients had a decreased fibrinolytic capacity. This could be ascribed to high plasma levels of PAI-1. The release of t-PA during venous occlusion of an arm for 10 min expressed as the increase in t-PA + t-PA-PAI-1 complex exhibited great variation and no significant difference could be demonstrated between the patients with a thrombotic tendency and the normal subjects.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Qi Liu ◽  
Xiang Fan ◽  
Helen Brogren ◽  
Ming-Ming Ning ◽  
Eng H Lo ◽  
...  

Aims: Plasminogen activator inhibitor-1 (PAI-1) is the main and potent endogenous tissue-type plasminogen activator (tPA) inhibitor, but an important question on whether PAI-1 in blood stream responds and interferes with the exogenously administered tPA remains unexplored. We for the first time investigated temporal profiles of PAI-1 concentration and activity in circulation after stroke and tPA administration in rats. Methods: Permanent MCAO focal stroke of rats were treated with saline or 10mg/kg tPA at 3 hours after stroke (n=10 per group). Plasma (platelet free) PAI-1 antigen and activity levels were measured by ELISA at before stroke, 3, 4.5 (1.5 hours after saline or tPA treatments) and 24 hours after stroke. Since vascular endothelial cells and platelets are two major cellular sources for PAI-1 in circulation, we measured releases of PAI-1 from cultured endothelial cells and isolated platelets after direct tPA (4 μg/ml) exposures for 60 min in vitro by ELISA (n=4 per group). Results: At 3 hours after stroke, both plasma PAI-1 antigen and activity were significantly increased (3.09±0.67, and 3.42±0.57 fold of before stroke baseline, respectively, all data are expressed as mean±SE). At 4.5 hours after stroke, intravenous tPA administration significantly further elevated PAI-1 antigen levels (5.26±1.24), while as expected that tPA neutralized most elevated PAI-1 activity (0.33±0.05). At 24 hours after stroke, PAI-1 antigen levels returned to the before baseline level, however, there was a significantly higher PAI-1 activity (2.51±0.53) in tPA treated rats. In vitro tPA exposures significantly increased PAI-1 releases into culture medium in cultured endothelial cells (1.65±0.08) and platelets (2.02±0.17). Conclution: Our experimental results suggest that tPA administration may further elevate stroke-increased blood PAI-1 concentration, but also increase PAI-1 activity at late 24 hours after stroke. The increased PAI-1 releases after tPA exposures in vitro suggest tPA may directly stimulate PAI-1 secretions from vascular walls and circulation platelets, which partially contributes to the PAI-1 elevation observed in focal stroke rats. The underlying regulation mechanisms and pathological consequence need further investigation.


1995 ◽  
Vol 268 (6) ◽  
pp. E1065-E1069 ◽  
Author(s):  
M. Yamashita ◽  
D. N. Darlington ◽  
E. J. Weeks ◽  
R. O. Jones ◽  
D. S. Gann

Large hemorrhage leads to hypercoagulability, a phenomenon that has never been well explained. Because an elevation of plasminogen activator inhibitor (PAI)-1 increases procoagulant activity, we have determined whether plasma PAI activity and tissue PAI-1 mRNA are elevated after hemorrhage. Sprague-Dawley rats were bled (20 or 15 ml/kg) 4 days after cannulation. Plasma PAI activity was determined by the capacity of plasma to inhibit tissue-type plasminogen activator activity. Changes of PAI-1 mRNA in various tissues were detected by high-performance liquid chromatography after reverse transcription and polymerase chain reaction. Hemorrhage (20 ml/kg) significantly elevated plasma PAI activity at 0.5, 1, 2, 4, 6, and 8 h after hemorrhage and PAI-1 mRNA in liver at 1, 2, 4, and 6 h after hemorrhage. The PAI-1 message was also significantly elevated in lung, heart, and kidney at 4 h after hemorrhage. The increases of PAI-1 mRNA after 20 ml/kg hemorrhage were significantly greater than those after 15 ml/kg hemorrhage. These findings indicate that large hemorrhage can induce the increases in PAI activity and PAI-1 message and suggest that induction of PAI-1 may be involved in the thrombogenic responses observed after large hemorrhage.


2002 ◽  
Vol 87 (2) ◽  
pp. 448-452 ◽  
Author(s):  
Pairunyar Sawathiparnich ◽  
Sandeep Kumar ◽  
Douglas E. Vaughan ◽  
Nancy J. Brown

Recent studies have defined a link between the renin-angiotensin-aldosterone system and fibrinolysis. The present study tests the hypothesis that endogenous aldosterone regulates plasminogen activator inhibitor-1 (PAI-1) production in humans. Hemodynamic parameters, PAI-1 and tissue-type plasminogen activator (t-PA) antigen, potassium, PRA, angiotensin II, and aldosterone were measured in nine male hypertensive subjects after a 3-wk washout, after 2 wk of hydrochlorothiazide (HCTZ; 25 mg plus 20 mmol KCl/d), and after 2 wk of spironolactone (100 mg/d plus KCl placebo). Spironolactone (P = 0.04), but not HCTZ (P = 0.57 vs. baseline; P = 0.1 vs. spironolactone), significantly lowered systolic blood pressure. Angiotensin II increased from baseline during both HCTZ (P = 0.02) and spironolactone (P = 0.02 vs. baseline; P = 0.19 vs. HCTZ) treatments. Although both HCTZ (P = 0.004) and spironolactone (P < 0.001 vs. baseline) increased aldosterone, the effect was greater with spironolactone (P < 0.001 vs. HCTZ). HCTZ increased PAI-1 antigen (P = 0.02), but did not alter t-PA antigen. In contrast, there was no effect of spironolactone on PAI-1 antigen (P = 0.28), whereas t-PA antigen was increased (P = 0.01). There was a significant correlation between PAI-1 antigen and serum aldosterone during both baseline and HCTZ study days (r2 = 0.57; P = 0.0003); however, treatment with spironolactone abolished this correlation (r2 = 0.13; P = 0.33). This study provides evidence that endogenous aldosterone influences PAI-1 production in humans.


2007 ◽  
Vol 53 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Yuditiya Purwosunu ◽  
Akihiko Sekizawa ◽  
Keiko Koide ◽  
Antonio Farina ◽  
Noroyono Wibowo ◽  
...  

Abstract Background: Detection of placental mRNA in maternal plasma has been reported in high-risk pregnancies. We attempted to investigate the concentrations of plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) mRNA in maternal plasma in preeclampsia. Methods: Peripheral blood samples were obtained from healthy pregnant women before and after delivery and also from women with or without preeclampsia. Plasma was isolated from these samples, and RNA was extracted. Plasma PAI-1 and tPA mRNA concentrations were then measured by use of reverse transcription PCR assays. The concentrations were converted into multiples of the median (MoM) of the controls adjusted for gestational age. Data were stratified and analyzed according to the clinical severity of preeclampsia and quantitative distribution of blood pressure and proteinuria. Results: The median (minimum–maximum) PAI-1 mRNA MoM values for women with preeclampsia and controls were 2.48 (0.82–8.53) and 1.00 (0.41–2.33), respectively, whereas the median (minimum–maximum) tPA mRNA MoM values were 3.33 (1.01–10.58) and 1.00 (0.95–1.20), respectively. The concentrations of both PAI-1 and tPA mRNA were significantly increased in cases of preeclampsia, compared with controls (P <0.0001). The MoM values of both mRNA species were directly correlated with the severity of preeclampsia and were greatest among a subgroup of hemolysis, increased liver enzymes, and low platelets pregnancies. Conclusion: Maternal plasma PAI-1 and tPA mRNAs are significantly increased in patients with preeclampsia and are positively correlated with the severity of preeclampsia.


1990 ◽  
Vol 110 (1) ◽  
pp. 155-163 ◽  
Author(s):  
R R Schleef ◽  
T J Podor ◽  
E Dunne ◽  
J Mimuro ◽  
D J Loskutoff

The interactions between exogenously added tissue-type plasminogen activator (t-PA) and the active form of type 1 plasminogen activator inhibitor (PAI-1) produced by and present in cultured human umbilical vein endothelial cells (HUVECs) were investigated. Immunoblotting analysis of the conditioned media obtained from monolayers of HUVECs treated with increasing concentrations of t-PA (less than or equal to 10 micrograms/ml) revealed a dose-dependent formation of both t-PA/PAI-1 complexes, and of a 42,000-Mr cleaved or modified form of the inhibitor. Immunoradiometric assays indicated that t-PA treatment resulted in a fourfold increase in PAI-1 antigen present in the conditioned media. This increase did not result from the release of PAI-1 from intracellular stores, but rather reflected a t-PA-dependent decrease in the PAI-1 content of the Triton X-100 insoluble extracellular matrix (ECM). Although the rate of t-PA-mediated release of PAI-1 was increased by the removal of the monolayer, similar quantities of PAI-1 were removed in the presence or absence of the cells. These results suggest that the cells only represent a semipermeable barrier between ECM-associated PAI-1 and exogenous t-PA. Treatment of HUVECs with t-PA (1 microgram/ml, 2 h) to deplete the ECM of PAI-1 did not affect the subsequent rate of PAI-1 production and deposition into the ECM. Immunogold electron microscopy of HUVECs not only confirmed the location of PAI-1 primarily in the region between the culture substratum and ventral cell surface but failed to demonstrate significant (less than 1%) PAI-1 on the cell surface. Thus, the majority of PAI-1 associated with cultured HUVEC monolayers is present under the cells in the ECM and is accessible to solution-phase t-PA.


1994 ◽  
Vol 72 (06) ◽  
pp. 900-905 ◽  
Author(s):  
Harold A R Stringer ◽  
Peter van Swieten ◽  
Anton J G Horrevoets ◽  
Annelies Smilde ◽  
Hans Pannekoek

SummaryWe further investigated the role of the finger (F) and the kringle-2 (K2) domains of tissue-type plasminogen activator (t-PA) in fibrin-stimulated plasminogen activation. To that end, the action of purified (wt) t-PA or of variants lacking F (del.F) or K2 (del.K2) was assessed either in a static, human whole blood clot-lysis system or in whole blood thrombi generated in the “Chandler loop”. In both clot-lysis systems, significant differences were observed for the initiation of thrombolysis with equimolar concentrations of the t-PA variants. A relatively minor “lag phase” occurred in thrombolysis mediated by wt t-PA, whereas a 6.4-fold and 1.6-fold extension is found for del.F and del.K2, respectively. We observed identical lag-times, characteristic for each t-PA variant, in platelet-rich heads and in platelet-poor tails of thrombi. Since plasminogen activator inhibitor 1 (PAI-1) is preferentially retained in the platelet-rich heads, we conclude that the inhibitor does not interfere with the initial stage of thrombolysis but exerts its action in later stages, resulting in a reduction of the rate of clot lysis. A complementation clot-lysis assay was devised to study a potential interplay of del.F and del.K2. Accordingly, clot lysis was determined with combinations of del.F and del.K2 that were inversely varied in relation to equipotent dosage to distinguish between additive, antagonistic or synergistic effects of these variants. The isobole for combinations of del.F and del.K2 shows an independent, additive action of del.F and del.K2 in clot lysis. Under the conditions employed, namely a relatively high concentration of fibrin and Glu-plasminogen and a low concentration of t-PA variant, our data show: i) the crucial role of the F domain and the lack of effect of PAI-1 in initiation of thrombolysis, ii) the lack of importance of the fibrimbinding domains of t-PA and the regulatory role of PAI-1 in advanced stages of thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document