Altered cerebellar functional connectivity in remitted bipolar disorder: A resting-state functional magnetic resonance imaging study

2017 ◽  
Vol 52 (10) ◽  
pp. 962-971 ◽  
Author(s):  
Ying Wang ◽  
Shuming Zhong ◽  
Guanmao Chen ◽  
Tao Liu ◽  
Lianping Zhao ◽  
...  

Objectives: Several recent studies have reported a strong association between the cerebellar structural and functional abnormalities and psychiatric disorders. However, there are no studies to investigate possible changes in cerebellar functional connectivity in bipolar disorder. This study aimed to examine the whole-brain functional connectivity pattern of patients with remitted bipolar disorder II, in particular in the cerebellum. Methods: A total of 25 patients with remitted bipolar disorder II and 25 controls underwent resting-state functional magnetic resonance imaging and neuropsychological tests. Voxel-wise whole-brain connectivity was analyzed using a graph theory approach: functional connectivity strength. A seed-based resting-state functional connectivity analysis was further performed to investigate abnormal functional connectivity pattern of those regions with changed functional connectivity strength. Results: Remitted bipolar disorder II patients had significantly decreased functional connectivity strength in the bilateral posterior lobes of cerebellum (mainly lobules VIIb/VIIIa). The seed-based functional connectivity analyses revealed decreased functional connectivity between the right posterior cerebellum and the default mode network (i.e. right posterior cingulate cortex/precuneus and right superior temporal gyrus), bilateral hippocampus, right putamen, left paracentral lobule and bilateral posterior cerebellum and decreased functional connectivity between the left posterior cerebellum and the right inferior parietal lobule and bilateral posterior cerebellum in patients with remitted bipolar disorder II. Conclusion: Our results suggest that cerebellar dysconnectivity, in particular distributed cerebellar–cerebral functional connectivity, might be associated with the pathogenesis of bipolar disorder.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xi Guo ◽  
Su Wang ◽  
Yu-Chen Chen ◽  
Heng-Le Wei ◽  
Gang-Ping Zhou ◽  
...  

Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


2021 ◽  
pp. E601-E610

BACKGROUND: Despite previous reports on cerebral structures and functional connectivity in patients with myofascial pain (MFP), it is not clear whether alterations in neurovascular coupling occur in these patients. OBJECTIVES: We analyzed the coupling between resting-state cerebral blood flow (CBF) and functional connectivity strength (FCS) for observation of neurovascular coupling in patients with chronic MFP. STUDY DESIGN: Observational study. SETTING: University hospital. METHODS: Resting-state functional magnetic resonance imaging and arterial spin labeling were performed in 23 patients with chronic MFP and 23 healthy controls (HC) for the calculation of FCS and CBF. The whole-brain gray matter CBF-FCS correlations and CBF/FCS ratios of the various voxels of the 2 groups were subsequently compared. RESULTS: Compared with the HC, the patients with MFP experienced a decrease in whole-brain gray matter CBF-FCS coupling. In patients with MFP, a decrease in CBF/FCS was found in the bilateral superior temporal gyri, right parahippocampal gyrus, right hippocampus, caudate nucleus, right medial prefrontal cortex, and the periaqueductal gray matter (PAG), whereas an increase in CBF/FCS was found in the bilateral lingual gyri, posterior cingulate cortex, and bilateral inferior parietal lobules. In addition, the CBF/FCS of the PAG in patients with MFP was significantly negatively correlated with the pain visual analog scale score and pain duration. LIMITATIONS: Alterations in neurovascular coupling in patients with MFP were observed only before treatment. Therefore, there is a lack of data on the alterations that occurred after treatment. CONCLUSION: This study demonstrated for the first time that impairment of neurovascular coupling in the brain may be a potential neuropathological mechanism of chronic MFP. KEY WORDS: Myofascial pain, resting-state functional magnetic resonance imaging, arterial spin labeling, cerebral blood flow, functional connectivity strength, neurovascular coupling


2019 ◽  
Vol 48 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Tingting Zhu ◽  
Lingyu Li ◽  
Yulin Song ◽  
Yu Han ◽  
Chengshu Zhou ◽  
...  

Default mode network (DMN) is an important functional brain network that supports aspects of cognition. Stroke has been reported to be associated with functional connectivity (FC) impairments within DMN. However, whether FC within DMN changes in transient ischemic attack (TIA), an important risk factor for stroke, remains unclear. Forty-eight TIA patients and 41 age- and sex-matched healthy controls (HCs) were recruited in this study. Using resting-state functional magnetic resonance imaging seed-based FC methods, we examined FC alterations within DMN in TIA patients, tested its associations with clinical information, and further explored the ability of FC abnormalities to predict follow-up ischemic attacks. We found significantly decreased FC of left middle temporal gyrus/angular gyrus both with medial prefrontal cortex (mPFC) and posterior cingulate cortex/precuneus (PCC/Pcu) and significantly decreased FC among each pair of mPFC, left PCC, and right Pcu in patients with TIA as compared with HCs. Moreover, the connectivity between mPFC and left PCC could predict future ischemic attacks of the patients. Collectively, these findings may provide insights into further understanding of the underlying pathological mechanism in TIA, and aberrant FC between the hubs within DMN may provide a reference for the imaging diagnosis and early intervention of TIA.


Sign in / Sign up

Export Citation Format

Share Document