functional connectivity strength
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 33)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 15 ◽  
Author(s):  
Liping Pan ◽  
Yakun Wu ◽  
Jie Bao ◽  
Dandan Guo ◽  
Xin Zhang ◽  
...  

Objective: The aim of the current study was to investigate the alterations in the neural networks of patients with temporal lobe epilepsy (TLE) during working memory (WM) encoding.Methods: Patients with TLE (n = 52) and healthy volunteers (n = 35) completed a WM task, during which 34-channel electroencephalogram signals were recorded. The neural networks during WM encoding were calculated in TLE patients with (TLE-WM) and without (TLE-N) WM deficits.Results: Functional connectivity strength decreased, and the theta network was altered in the TLE-WM group, although no significant differences in clinical features were observed between the TLE-N and TLE-WM groups.Conclusions: Not all patients with TLE present with cognitive impairments and alterations in the theta network were identified in TLE patients with functional cognitive deficits.Significance: The theta network may represent a sensitive measure of cognitive impairment and could predict cognitive outcomes among patients with TLE.


2021 ◽  
Author(s):  
Simone JT van Montfort ◽  
Fienke L Ditzel ◽  
Ilse MJ Kant ◽  
Ellen Aarts ◽  
Lisette M Vernooij ◽  
...  

AbstractBackgroundDelirium is a frequent complication of elective surgery in elderly patients, associated with an increased risk of long-term cognitive impairment and dementia. Disturbances in the functional brain network were previously reported during delirium. We hypothesized persisting alterations in functional brain networks three months after elective surgery in patients with postoperative delirium, and hypothesized that postoperative brain connectivity changes (irrespective of delirium) are related to cognitive decline.MethodsElderly patients (N=554) undergoing elective surgery underwent clinical assessments (including Trail Making Test B (TMT-B) and resting-state functional magnetic resonance imaging (rs-fMRI) before and three months after surgery. Delirium was assessed on the first seven postoperative days. After strict motion correction, rs-fMRI connectivity strength and network characteristics were calculated in 246 patients (130 patients underwent scans at both timepoints), of whom 38 (16%) developed postoperative delirium.ResultsRs-fMRI functional connectivity strength increased after surgery in the total study population (β=0.006, 95%CI=0.000–0.012, p=0.021), but decreased after postoperative delirium (β=-0.014, 95%CI=0.000–0.012, p=0.026). No difference in TMT-B scores was found at follow-up between patients with and without postoperative delirium. Patients who decreased in functional connectivity strength declined in TMT-B scores compared to the group that did not (β=11.04, 95%CI=0.85-21.2, p=0.034).ConclusionsDelirium was associated with decreased functional connectivity strength three months after the syndrome was clinically resolved, which implies that delirium has lasting impact on brain networks. Decreased connectivity strength was associated with statistically significant (but not necessarily clinically relevant) cognitive deterioration after major surgery, which was not specifically related to delirium.Summary statementDelirium was associated with decreased resting-state fMRI functional connectivity strength three months after the syndrome was clinically resolved. Irrespective of delirium, decreased connectivity strength after major surgery was associated with a statistically significant cognitive deterioration.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xi Guo ◽  
Su Wang ◽  
Yu-Chen Chen ◽  
Heng-Le Wei ◽  
Gang-Ping Zhou ◽  
...  

Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.


NeuroImage ◽  
2021 ◽  
pp. 118770
Author(s):  
Bianca Burger ◽  
Karl-Heinz Nenning ◽  
Ernst Schwartz ◽  
Daniel S. Margulies ◽  
Alexandros Goulas ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Kai Chen ◽  
Lijie Wang ◽  
Jianguang Zeng ◽  
Ai Chen ◽  
Zhao Gao ◽  
...  

The association cortices of the brain are essential for integrating multimodal information that subserves complex and high-order cognitive functions. To delineate the changing pattern of associative cortices can provide critical insight into brain development, aging, plasticity, and disease-triggered functional abnormalities. However, how to quantitatively characterize the association capability of the brain is elusive. Here, we developed a new method of association index (Asso) at the voxel level to quantitatively characterize the brain association ability. Using the Asso method, we found high Asso values in association cortical networks, and low values in visual and limbic networks, suggesting a pattern of significant gradient distribution in neural functions. The spatial distribution patterns of Asso show high similarities across different thresholds suggesting that Asso mapping is a threshold-free method. In addition, compared with functional connectivity strength, i.e., degree centrality method, Asso mapping showed different patterns for association cortices and primary cortices. Finally, the Asso method was applied to investigate aging effects and identified similar findings with previous studies. All these results indicated that Asso can characterize the brain association patterns effectively and open a new avenue to reveal a neural basis for development, aging, and brain disorders.


2021 ◽  
Vol 13 ◽  
Author(s):  
Miao Zhang ◽  
Wanqing Sun ◽  
Ziyun Guan ◽  
Jialin Hu ◽  
Binyin Li ◽  
...  

As a central hub in the interconnected brain network, the precuneus has been reported showing disrupted functional connectivity and hypometabolism in Alzheimer’s disease (AD). However, as a highly heterogeneous cortical structure, little is known whether individual subregion of the precuneus is uniformly or differentially involved in the progression of AD. To this end, using a hybrid PET/fMRI technique, we compared resting-state functional connectivity strength (FCS) and glucose metabolism in dorsal anterior (DA_pcu), dorsal posterior (DP_pcu) and ventral (V_pcu) subregions of the precuneus among 20 AD patients, 23 mild cognitive impairment (MCI) patients, and 27 matched cognitively normal (CN) subjects. The sub-parcellation of precuneus was performed using a K-means clustering algorithm based on its intra-regional functional connectivity. For the whole precuneus, decreased FCS (p = 0.047) and glucose hypometabolism (p = 0.006) were observed in AD patients compared to CN subjects. For the subregions of the precuneus, decreased FCS was found in DP_pcu of AD patients compared to MCI patients (p = 0.011) and in V_pcu for both MCI (p = 0.006) and AD (p = 0.008) patients compared to CN subjects. Reduced glucose metabolism was found in DP_pcu of AD patients compared to CN subjects (p = 0.038) and in V_pcu of AD patients compared to both MCI patients (p = 0.045) and CN subjects (p < 0.001). For both FCS and glucose metabolism, DA_pcu remained relatively unaffected by AD. Moreover, only in V_pcu, disruptions in FCS (r = 0.498, p = 0.042) and hypometabolism (r = 0.566, p = 0.018) were significantly correlated with the cognitive decline of AD patients. Our results demonstrated a distinctively disrupted functional and metabolic pattern from ventral to dorsal precuneus affected by AD, with V_pcu and DA_pcu being the most vulnerable and conservative subregion, respectively. Findings of this study extend our knowledge on the differential roles of precuneus subregions in AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wuzeng Wei ◽  
Tao Wang ◽  
Tuersong Abulizi ◽  
Bing Li ◽  
Jun Liu

Background: Changes in regional neural activity and functional connectivity in cervical spondylotic myelopathy (CSM) patients have been reported. However, resting-state cerebral blood flow (CBF) changes and coupling between CBF and functional connectivity in CSM patients are largely unknown.Methods: Twenty-seven CSM patients and 24 sex/age-matched healthy participants underwent resting-state functional MRI and arterial spin labeling imaging to compare functional connectivity strength (FCS) and CBF between the two groups. The CBF–FCS coupling of the whole gray matter and specific regions of interest was also compared between the groups.Results: Compared with healthy individuals, CBF–FCS coupling was significantly lower in CSM patients. The decrease in CBF–FCS coupling in CSM patients was observed in the superior frontal gyrus, bilateral thalamus, and right calcarine cortex, whereas the increase in CBF–FCS coupling was observed in the middle frontal gyrus. Moreover, low CBF and high FCS were observed in sensorimotor cortices and visual cortices, respectively.Conclusion: In general, neurovascular decoupling at cortical level may be a potential neuropathological mechanism of CSM.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dan Lv ◽  
Yangpan Ou ◽  
Yuhua Wang ◽  
Jidong Ma ◽  
Chuang Zhan ◽  
...  

Background. Previous studies explored the whole-brain functional connectome using the degree approach in patients with obsessive-compulsive disorder (OCD). However, whether the altered degree values can be used to discriminate OCD from healthy controls (HCs) remains unclear. Methods. A total of 40 medication-free patients with OCD and 38 HCs underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan. Data were analyzed with the degree approach and a support vector machine (SVM) classifier. Results. Patients with OCD showed increased degree values in the left thalamus and left cerebellum Crus I and decreased degree values in the left dorsolateral prefrontal cortex, right precuneus, and left postcentral gyrus. SVM classification analysis indicated that the increased degree value in the left thalamus is a marker of OCD, with an acceptable accuracy of 88.46%, sensitivity of 87.50%, and specificity of 89.47%. Conclusion. Altered degree values within and outside the cortical-striatal-thalamic-cortical (CSTC) circuit may cocontribute to the pathophysiology of OCD. Increased degree values of the left thalamus can be used as a future marker for OCD understanding-classification.


Sign in / Sign up

Export Citation Format

Share Document