A Curvilinear Effect of Mental Workload on Mental Effort and Behavioral Adaptability: An Approach With the Pre-Ejection Period

Author(s):  
Charlotte Mallat ◽  
Julien Cegarra ◽  
Christophe Calmettes ◽  
Rémi L. Capa

Objective We tested Hancock and Szalma’s mental workload model, which has never been experimentally validated at a global level with the measure of the pre-ejection period (PEP), an index of beta-adrenergic sympathetic impact. Background Operators adapt to mental workload. When mental workload level increases, behavioral and physiological adaptability intensifies to reduce the decline in performance. However, if the mental workload exceeds an intermediate level, behavioral and physiological adaptability will decrease to protect individuals from excessive perturbations. This decrease is associated with a change in behavioral strategies and disengagement. Method The experimental task was a modified Fitts’ task used in Hancock and Caird. Five levels of task difficulty were computed. Behavioral and physiological adaptability was indexed by the performance with speed–accuracy trade-off and PEP reactivity. Results A curvilinear effect of task difficulty on PEP reactivity was significant, with high reactivity at the intermediate level but low reactivity at other levels. We observed a linear effect of task difficulty on error rate and a curvilinear effect on movement time. A decline in performance was noted up to the intermediate level, with a speed–accuracy trade-off above this level showing a faster movement time. Conclusion We observed for the first time behavioral and physiological adaptability as a function of mental workload. Application The results have important implications for the modeling of mental workload, particularly in the context of the performance-sensitive domain (car driving and air traffic control). They can help guide the design of human–computer interaction to maximize adaptive behavior, that is, the “comfort zone.”

Ergonomics ◽  
2021 ◽  
pp. 1-54
Author(s):  
M. Pagnotta ◽  
D. M. Jacobs ◽  
P. L. de Frutos ◽  
R. Rodríguez ◽  
J. Ibáñez-Gijón ◽  
...  

1983 ◽  
Vol 35 (2) ◽  
pp. 279-296 ◽  
Author(s):  
Charles E. Wright ◽  
David E. Meyer

A linear speed-accuracy trade-off has been found for rapid, precisely timed movements from a home position toward a target point. In this trade-off, We = K1 + K2(D/T), where D is the distance between the home position and the target, T is a pre-specified movement time, and We is the standard deviation of the distances actually moved. This result differs from Fitts' law, the commonly observed logarithmic trade-off in aimed movements. A new experiment with wrist rotations was performed to determine what conditions induce the linear trade-off rather than Fitts' law. Three types of condition are considered: movement brevity, feedback deprivation, and temporal precision. The experiment yielded a linear trade-off for precisely timed movements even when their durations significantly exceeded an amount of time (200 ms) sufficient to process visual feedback. This result suggests that the linearity does not depend on movement brevity and/or feedback deprivation per se. Instead it supports a temporal-precision hypothesis that the linear trade-off occurs when aimed movements must have precisely specified durations.


Author(s):  
Nam H. Kim ◽  
Michael Wininger ◽  
Gail Forrest ◽  
Thomas Edwards ◽  
William Craelius

A fundamental principle of human motor behavior states that the accuracy of targeted movements relates reciprocally to their speed. This is quantified by Fitts’ Law, wherein movement time (MT) and index of difficulty (ID), the log2 ratio of target distance (A) to target height (H) has logarithmic linear relationship; MT = a+b·log2(2A/H) = a+b·ID. The slope, b (seconds/bits), measures targeting performance as the time spent at each difficulty level, expressed as bits of information to be processed by the neuromotor system [1, 2]. Fitts’ paradigm is a common measure of the kinematic performance of the upper limb, but has not been applied to its dynamic performance. Herein, we developed a dynamic speed-accuracy trade-off (DSAT) test of grip force modulation, which can be used both for assessment and training.


1997 ◽  
Vol 85 (2) ◽  
pp. 705-718 ◽  
Author(s):  
Chia-Fen Chi ◽  
Chia-Liang Lin

The current experiment examined the speed-accuracy trade-off of saccadic movement between two targets. Ten subjects looked alternately at two targets as fast and as accurately as possible for 2 min. under different conditions of target size, distance between targets, and direction of eye movement. Saccadic movement of the left eye was tracked and recorded with an infrared eye monitoring device to compute the starting position, ending position, and duration of each saccadic movement. Eye-movement time was significantly related to target size and distance between targets, but the speed-accuracy trade-off was significantly different from that predicted by Fitts' Law. Reaction time was not significantly changed by the direction of eye movement.


2021 ◽  
Author(s):  
Matheus Pacheco ◽  
Charley W. Lafe ◽  
Che-Hsiu Chen ◽  
Tsung-Yu Hsieh

The literature of Speed-Accuracy Trade-Off (SAT) in motor control has evidenced individuality in the preference to trade different aspects (mean, variance) of spatial and temporal errors. Nonetheless, to the best of our knowledge, how robust this preference is has not been properly tested. Thirty participants performed nine conditions with different time and spatial criteria over two days (scanning). In-between these scanning conditions, individuals performed a practice condition that required modifications of the individuals’ preferences in SAT. Through Bayesian analyses, we found that, despite individuals demonstrating changes during practice, decreasing movement time, they did not modify how they performed the scanning conditions. This is evidence for a robust SAT individual tendency. We discuss how such individuality could modify how individuals perform within/between SAT criteria, and what this means for interpretation of results.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


Author(s):  
Eugene Hayden ◽  
Kang Wang ◽  
Chengjie Wu ◽  
Shi Cao

This study explores the design, implementation, and evaluation of an Augmented Reality (AR) prototype that assists novice operators in performing procedural tasks in simulator environments. The prototype uses an optical see-through head-mounted display (OST HMD) in conjunction with a simulator display to supplement sequences of interactive visual and attention-guiding cues to the operator’s field of view. We used a 2x2 within-subject design to test two conditions: with/without AR-cues, each condition had a voice assistant and two procedural tasks (preflight and landing). An experiment examined twenty-six novice operators. The results demonstrated that augmented reality had benefits in terms of improved situation awareness and accuracy, however, it yielded longer task completion time by creating a speed-accuracy trade-off effect in favour of accuracy. No significant effect on mental workload is found. The results suggest that augmented reality systems have the potential to be used by a wider audience of operators.


1989 ◽  
Vol 33 (18) ◽  
pp. 1233-1237 ◽  
Author(s):  
P. A. Hancock ◽  
M. H. Chignell ◽  
M. Vercruyssen ◽  
M. Denhoff

The present experiments were designed to test predictions from a model of mental workload. The model predicts non-linear increases in mental workload as perceived distance from a task goal grows and effective time for action is reduced. Diminution of mental workload is achieved by application of effort which brings the task goal into the region of acceptable time/distance constraints for successful resolution. Two experiments are reported which tested these assertions using the timepools performance task. Timepools is unique as a performance task in that it generates a spatial representation of a shrinking temporal target. The independent effects of path length, i.e., the number of sequential targets to be acquired, and shrink rate, i.e., the collapse time during which the circle is halved in area, may be assessed using performance variables such as reaction time (RT), movement time (MT), error rate (E), and the subjective perception of workload. Data from Experiment 1, indicate systematic effects for task related factors across performance and workload measures, although such a pattern was not isomorphically mapped to the a priori assumed difficulty of the task. In Experiment 2, shrink rate and path length had independent effect on RT and MT respectively, which were reflected in components of the individual workload scales. The ramifications with respect to the model are elaborated.


Sign in / Sign up

Export Citation Format

Share Document