scholarly journals Research on performance seeking control based on Beetle Antennae Search algorithm

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1440-1445
Author(s):  
Qiangang Zheng ◽  
Dewei Xiang ◽  
Juan Fang ◽  
Yong Wang ◽  
Haibo Zhang ◽  
...  

A novel performance seeking control) method based on Beetle Antennae Search algorithm is proposed to improve the real-time performance of performance seeking control. The Beetle Antennae Search imitates the function of antennae of beetle. The Beetle Antennae Search has better real-time performance because of the objective function only calculated twice in Beetle Antennae Search at each iteration. Moreover, the Beetle Antennae Search has global search ability. The performance seeking control simulations based on Beetle Antennae Search, Genetic Algorithm and particle swarm optimization are carried out. The simulations show that the Beetle Antennae Search has much better real-time performance than the conventional probability-based algorithms Genetic Algorithm and particle swarm optimization. The simulations also show that these three probability-based algorithms can get better engine performance, such as more thrust, less specific fuel consumption and less turbine inlet temperature.

2013 ◽  
Vol 679 ◽  
pp. 77-81 ◽  
Author(s):  
Song Chai ◽  
Yu Bai Li ◽  
Chang Wu ◽  
Jian Wang

Real-time task schedule problem in Chip-Multiprocessor (CMP) receives wide attention in recent years. It is partly because the increasing demand for CMP solutions call for better schedule algorithm to exploit the full potential of hardware, and partly because of the complexity of schedule problem, which itself is an NP-hard problem. To address this task schedule problem, various of heuristics have been studied, among which, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Simulated Annealing (SA) are the most popular ones. In this paper, we implement these 3 schedule heuristics, and compare their performance under the context of real-time tasks scheduling on CMP. According to the results of our intensive simulations, PSO has the best fitness optimization of these 3 algorithms, and SA is the most efficient algorithm.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Liqun Liu ◽  
Chunxia Liu

The output characteristics of multiple photovoltaic (PV) arrays at partial shading are characterized by multiple steps and peaks. This makes that the maximum power point tracking (MPPT) of a large scale PV system becomes a difficult task. The conventional MPPT control method was unable to track the maximum power point (MPP) under random partial shading conditions, making the output efficiency of the PV system is low. To overcome this difficulty, in this paper, an improved MPPT control method with better performance based on the genetic algorithm (GA) and adaptive particle swarm optimization (APSO) algorithm is proposed to solve the random partial shading problem. The proposed genetic algorithm adaptive particle swarm optimization (GAAPSO) method conveniently can be used in the real-time MPPT control strategy for large scale PV system, and the implementation of the collect circuit is easy to gain the global peak of multiple PV arrays, thereby resulting in lower cost, higher overall efficiency. The proposed GAAPSO method has been experimentally validated by using several illustrative examples. Simulations and experimental results demonstrate that the GAAPSO method provides effective, fast, and perfect tracking.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Sign in / Sign up

Export Citation Format

Share Document