scholarly journals Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects

2019 ◽  
Vol 53 (1-2) ◽  
pp. 141-150 ◽  
Author(s):  
Menghua Zhang ◽  
Yongfeng Zhang ◽  
Bing Ji ◽  
Changhui Ma ◽  
Xingong Cheng

As typical underactuated systems, tower crane systems present complicated nonlinear dynamics. For simplicity, the payload swing is traditionally modeled as a single-pendulum in existing works. Actually, when the hook mass is close to the payload mass, or the size of the payload is large, a tower crane may exhibit double-pendulum effects. In addition, existing control methods assume that the hook and the payload only swing in a plane. To tackle the aforementioned practical problems, we establish the dynamical model of the tower cranes with double-pendulum and spherical-pendulum effects. Then, on this basis, an energy-based controller is designed and analyzed using the established dynamic model. To further obtain rapid hook and payload swing suppression and elimination, the swing part is introduced to the energy-based controller. Lyapunov techniques and LaSalle’s invariance theorem are provided to demonstrate the asymptotic stability of the closed-loop system and the convergence of the system states. Simulation results are illustrated to verify the correctness and effectiveness of the designed controller.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chao Guo ◽  
Kemei Zhang

This paper studies the problem of output feedback disturbance attenuation for a class of uncertain nonlinear systems with input matching uncertainty and unknown multiple time-varying delays, whose nonlinearities are bounded by unmeasured states multiplying unknown polynomial-of-output growth rate. By skillfully combining extended state observer, dynamic gain technique, and Lyapunov-Krasovskii theorem, a delay-independent output feedback controller can be developed with only one dynamic gain to guarantee the boundedness of closed-loop system states and the achievement of global disturbance attenuation in the L2-gain sense.


2017 ◽  
Vol 24 (16) ◽  
pp. 3617-3630 ◽  
Author(s):  
Yu Liu ◽  
Fang Guo

This paper is concerned with the design of boundary control for globally stabilizing a flexible marine riser system. The dynamics of the riser system are represented in the form of hybrid partial–ordinary differential equations. Firstly, when the system state available for feedback is unmeasurable, an observer backstepping method is employed to reconstruct the system state and then design the boundary control for vibration suppression of the riser system. Subsequently, for the case that the system states in the designed control law cannot be accurately obtained, the high-gain observers are utilized to estimate those unmeasurable system states. With the proposed control, the uniformly ultimately bounded stability of the closed-loop system is demonstrated by the use of Lyapunov’s synthetic method and the state observer error is converged exponentially to zero as time approaches to infinity. In addition, the disturbance observer is introduced to track external environmental disturbance. Finally, the control performance of the closed-loop system is validated by carrying out numerical simulation.


2013 ◽  
Vol 416-417 ◽  
pp. 486-491
Author(s):  
Yi Jiang ◽  
Jien Ma

This paper analyzes the PID and the Bang-Bang control methods. To compare the performance of these traditional algorithms, the speed control of a brushless DC drive system is implemented in real-time, using these two methods. The parameters in the controller can be adjusted by the hardware and the software to achieve the optimum performance of the closed-loop system. The experiment results proved that these two controllers have their own merit and defect according to the different steady-state performance and dynamic response respectively. It is concluded that the PID and the Bang-Bang controllers could be used in different applications.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4608 ◽  
Author(s):  
Ivanescu ◽  
Popescu ◽  
Popescu ◽  
Channa ◽  
Poboroniuc

This paper deals with the fractional order control for the complex systems, hand exoskeleton and sensors, that monitor and control the human behavior. The control laws based on physical significance variables, for fractional order models, with delays or without delays, are proposed and discussed. Lyapunov techniques and the methods that derive from Yakubovici-Kalman-Popov lemma are used and the frequency criterions that ensure asymptotic stability of the closed loop system are inferred. An observer control is proposed for the complex models, exoskeleton and sensors. The asymptotic stability of the system, exoskeleton hand-observer, is studied for sector control laws. Numerical simulations for an intelligent haptic robot-glove are presented. Several examples regarding these models, with delays or without delays, by using sector control laws or an observer control, are analyzed. The experimental platform is presented.


Author(s):  
Nirvana Popescu ◽  
Mircea Ivanescu ◽  
Decebal Popescu

This paper focuses on the robust control problem for a class of linear uncertain systems by using frequency techniques. The controller/observer dynamics are analyzed using Lyapunov techniques, in terms of the state and state estimation error, for an uncertainty constrained over a specified range. A Popov-type criterion, a “circle criterion,” defined as the Popov frequency condition and the uncertainty circle, is formulated. It is proved that the closed-loop system is robustly stable if the Popov condition holds at all frequencies. The proposed method is validated against a robust controller for a balancing robot (BR).


2006 ◽  
Vol 17 (07) ◽  
pp. 1027-1035
Author(s):  
ZHENG MAO WU ◽  
JUN GUO LU ◽  
JIAN YING XIE ◽  
JIE LI

An approach for chaotifying a stable controllable linear system via single input state-feedback is presented. The feedback controller designed is a sawtooth function of the system states, which can make the fixed point of the closed-loop system to be a snap-back repeller, thereby yielding chaotic dynamics. Based on the Marotto theorem, it is proven theoretically that the closed-loop system is chaotic in the sense of Li and Yorke. Finally, the simulation results are used to illustrate the effectiveness of the proposed theory.


2015 ◽  
Vol 735 ◽  
pp. 282-288
Author(s):  
Najib K. Dankadai ◽  
Ahmad Athif Mohd Faudzi ◽  
Amir Bature ◽  
Suleiman Babani ◽  
Muhammad I. Faruk

This paper presents the application of model predictive controller for controlling a nonlinear 2D gantry crane system with a DC motor as an actuator. The gantry crane system (GCS) dynamics is derived using Lagrange equation method. A model predictive controller is designed based on the linearised GCS and prediction cost function to ensure accurate positioning and oscillation reduction. Simulation via MATLAB and Simulink was performed to investigate the performance of the model predictive controller on the GCS. The controller test was done under several elements altering the behaviour of the system. The closed loop system was analysed considering different cable length, payload mass and trolley position. It was found that the closed loop control meets the main goal of this work, trolley positioning as fast as possible with minimum payload swinging all within a robust input voltage.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Lei Zhang ◽  
Zhiqiang Zhang ◽  
Zhenpo Wang ◽  
Junjun Deng ◽  
David G. Dorrell

AbstractAn X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control. This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles, with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts. Driving condition identification including driver's operation intention, critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme. Under steering and braking maneuvers, different driving condition identification methods are described in this paper. These are the trigger conditions and the basis for the implementation of chassis coordinated control. For the vehicles equipped with steering-by-wire, braking-by-wire and/or wire-controlled-suspension systems, state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems. Finally, the development trends are discussed.


Sign in / Sign up

Export Citation Format

Share Document