Classical micromechanics modeling of nanocomposites with carbon nanofibers and interphase

2011 ◽  
Vol 45 (23) ◽  
pp. 2401-2413 ◽  
Author(s):  
Jaesang Yu ◽  
Thomas E. Lacy ◽  
Hossein Toghiani ◽  
Charles U. Pittman ◽  
Youngkeun Hwang

A micromechanics parametric study was performed to investigate the effect of carbon nanofiber morphology (i.e. hollow vs. solid cross-section), nanofiber waviness, and both nanofiber–resin interphase properties and dimensions on bulk nanocomposite elastic moduli. Mori–Tanaka and self-consistent models were developed for composites containing heterogeneities with multilayered coatings. For a given nanofiber axial force–displacement relationship, the elastic modulus for hollow nanofibers can significantly exceed that for solid nanofibers resulting in notable differences in bulk nanocomposite properties. In addition, the development of a nanofiber–resin interphase had a notable effect on the bulk elastic moduli. Consistent with results from the literature, small degrees of nanofiber waviness resulted in a significant decrease in effective composite properties.

Author(s):  
Vahid Tajeddini ◽  
Chien-hong Lin ◽  
Anastasia Muliana ◽  
Martin Lévesque

This study introduces a micromechanical model that incorporates detailed microstructures for analyzing the effective electro-mechanical properties, such as piezoelectric and permittivity constants as well as elastic moduli, of piezoelectric particle reinforced composites. The studied composites consist of polarized spherical piezoelectric particles dispersed into a continuous and elastic polymeric matrix. A micromechanical model generated using three-dimensional (3D) continuum elements within a finite element (FE) framework. For each volume fraction (VF) of particles, realization with different particle sizes and arrangements were generated in order to represent microstructures of a particle composite. We examined the effects of microstructural morphologies, such as particle sizes and distributions, and particle volume fractions on the overall effective electro-mechanical properties of the active composites. The overall electro-mechanical properties determined from the present micromechanical model were compared to those generated using the Mori-Tanaka, self-consistent, and simplified unit-cell micromechanical models.


1982 ◽  
Vol 9 (8) ◽  
pp. 903-906 ◽  
Author(s):  
Frank S. Henyey ◽  
Neil Pomphrey

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Shang-Chang Lin ◽  
Chia-Jui Hu ◽  
Wen-Pin Shih ◽  
Pei-Chun Lin

We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.


Sign in / Sign up

Export Citation Format

Share Document