Comparison of composite damage growth tools for fatigue behavior of notched composite laminates

2017 ◽  
Vol 51 (15) ◽  
pp. 2227-2249 ◽  
Author(s):  
SP Engelstad ◽  
SB Clay

This paper provides overall comparisons of the fatigue results of an Air Force Research Laboratory exploration into the state of the art of existing technology in composite progressive damage analysis. This program performed blind and recalibration benchmarking exercises for nine different composite progressive damage analysis codes using unnotched and open-hole composite coupons under both static and fatigue loading. This paper summarizes the results of the fatigue portion of this program in which seven of the codes were evaluated. Comparisons are made herein for all seven participants’ predictions with the test data. Overall percent error data are presented, as well as a long list of observations and lessons learned during this year-long effort.

2016 ◽  
Vol 51 (10) ◽  
pp. 1493-1524 ◽  
Author(s):  
Stephen P Engelstad ◽  
Stephen B Clay

This paper provides overall comparisons of the static results of an Air Force Research Laboratory exploration into the state of the art of existing technology in composite progressive damage analysis. In this study, blind and re-calibration bench-marking exercises were performed using nine different composite progressive damage analysis codes on unnotched and notched (open-hole) composite coupons under both static and fatigue loading. This paper summarizes the results of the static portion of this program. Comparisons are made herein of specimen stiffness and strength predictions against each other and the test data. Overall percent error data is presented, as well as a list of observations and lessons learned during this year-long effort.


2016 ◽  
Vol 51 (10) ◽  
pp. 1325-1331 ◽  
Author(s):  
Stephen B Clay ◽  
Stephen P Engelstad

This article introduces an Air Force Research Laboratory study, which performed static and fatigue benchmark exercises for nine composite progressive damage analysis methods. Air Force Research Laboratory is interested in exploring the feasibility of these progressive damage analysis methods to predict composite damage growth for the purposes of improved durability and damage tolerance analysis of composite aircraft structure. This article gives the background, goals, motivation, and guiding principles of the study and provides brief descriptions of the teams that participated and the tools that were utilized.


2019 ◽  
Vol 64 (2) ◽  
pp. 1-12
Author(s):  
Yuri Nikishkov ◽  
Guillaume Seon ◽  
Andrew Makeev

Advanced polymeric composites are playing a major role in designing high-performance and lightweight vertical lift structures. However, uncertain residual strength and remaining useful life of the composite rotor and airframe structures due to complexity of failure mechanisms and susceptibility to manufacturing irregularities, which may be precursors to structural damage, impose risks that cannot be mitigated exclusively by time-consuming and costly experimental iterations. Validated analysis techniques accelerating design, certification, and qualification of composite structures are needed. Our team has been taking essential steps toward improving confidence in material qualification for laminated composites. The first step started with our reduced lamina test methods, short-beam shear, and small-plate twist based on digital image correlation measuring as a subset the standard material properties and, in addition, key properties that cannot be currently measured using any standard test methods. The lamina properties provide essential material input data for laminate analysis. The laminate analysis was the second step increasing confidence in material qualification. A known weakness of the existing progressive damage analysis methods is the lack of effective techniques to predict ultimate failure. The newly developed methodology relies on explicit finite element modeling and eliminates convergence issues in the ply-level progressive damage analysis methods due to severe nonlinear discontinuities after propagation of damage beyond detectable size. This work shows results of applying this methodology to nanosilica-toughened IM7/PMT-F3GHT open-hole tension strength/fatigue, open-hole compression strength/fatigue, and bearing strength multidirectional laminate configurations. The ability to predict progression of damage from initiation to ultimate strength and fatigue for advanced material systems including IM7/PMT-F3GHT carbon/epoxy reinforced by nanosilica has been demonstrated for the first time.


2014 ◽  
Vol 1064 ◽  
pp. 108-114 ◽  
Author(s):  
Jun Kang ◽  
Zhi Dong Guan ◽  
Zeng Shan Li ◽  
Zhun Liu

A three dimensional analysis model is developed on the fatigue life prediction of composite laminates based on a progressive damage analysis. This model consists of stress analysis, fatigue failure analysis and material property degradation. Teserpe’s failure criteria is used to fatigue damage analysis. Fiber tensile/compressive breakage, matrix tensile/compressive cracking, matrix/fiber shear failure and tension/compression delamination are considered in fatigue damage analysis. The methodologies of sudden degradation and gradual degradation are both applied in the material property degradation. The stiffness and strength gradual degradation is based on the Shokrieh fatigue model, which is based on fatigue test for unidirectional laminates. In order to consider the scatter of the material in the practical structures, the stiffness and strength of the material are randomly distributed using normal distribution in the numerical model. The progressive fatigue damage model is developed in finite element code ABAQUS through user subroutine UMAT, which can simulate the fatigue damage process. Fatigue life of different ply stacking sequences and geometries composite laminates under different cycle loading are predicted. The predicted fatigue life is in good agreement with the experimental results.


2010 ◽  
Vol 123-125 ◽  
pp. 579-582
Author(s):  
Hossein Hosseini-Toudeshky ◽  
F. Mazaheri Torei ◽  
Bijan Mohammadi

The aim of the present study is evaluation of the element-free Galerkin method (EFGM) in progressive damage analyses of composite laminates. For this purpose, an orthotropic EFGM formulation is employed which is based on the first-order shear deformation theory (FSDT). In progressive damage analysis, the Hashin’s type failure criteria and their degradation rules are used. The obtained damage results from EFGM are compared with the experimental and FEM results.


2021 ◽  
Author(s):  
MANISH H. NAGARAJ ◽  
ERASMO CARRERA ◽  
MARCO PETROLO

The objective of the current work is to develop a global-local framework for the progressive damage analysis of composite laminated structures. The technique involves two sequential analyses—an initial low-fidelity 3D-FE based linear analysis of the global structure, followed by the local nonlinear analysis of critical regions where damage is likely to occur. The numerical models used for the local analysis are developed using higher-order layer-wise structural theories obtained via the Carrera Unified Formulation. Composite damage is modelled using the CODAM2 model based on continuum damage mechanics, and the nonlinear problem is solved using explicit time integration schemes. Preliminary assessments are carried out to validate the proposed global-local framework by considering open-hole tensile specimens of quasi-isotropic composite laminates. Both full-scale CUF models and the proposed global-local approach are used to predict the tensile strength of the specimen. It is shown that the obtained results are in good agreement with experiment data, thus validating the framework, and a multi-fold improvement in computational time is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document