Time to failure modeling of carbon fiber reinforced polymer composites subject to simultaneous tension and one-sided heat flux

2018 ◽  
Vol 52 (18) ◽  
pp. 2503-2514 ◽  
Author(s):  
D Swanson ◽  
J Wolfrum

This study focuses on observing and analyzing the time to failure of carbon fiber reinforced polymers subject to mechanical loading and one-sided heat flux simulating fire damage. The purpose of this investigation is to understand the rate of thermal degradation and mechanical property loss from fire exposure, resulting in catastrophic failure under simultaneous tensile loading. Composite samples of varying thicknesses and layup patterns are subject to a constant tensile load below the ultimate strength of the material. A thermal load is applied to one side by an infrared band heater, emitting a constant heat flux. The time to failure is monitored to determine how long the material can withstand this combined loading condition. A consistent trend is observed for various heat flux settings. High mechanical loads contribute to a shorter time to failure, and low mechanical loads contribute to a longer time to failure. Similarly, higher heat flux settings result in shorter failure times, and lower heat flux settings result in longer failure times. Temperature profiles are created based on heat flux exposure time and position through the sample thickness, establishing failure criteria for different loading conditions. The resulting trends are observed and extrapolated to create a predictive model using an Arrhenius exponential decay function.

2021 ◽  
Vol 11 (4) ◽  
pp. 1508
Author(s):  
Muhammad Khalid Rizwan ◽  
Stefano Laureti ◽  
Hubert Mooshofer ◽  
Matthias Goldammer ◽  
Marco Ricci

The use of pulse-compression in ultrasonic non-destructive testing has assured, in various applications, a significant improvement in the signal-to-noise ratio. In this work, the technique is combined with linear phased array to improve the sensitivity and resolution in the ultrasonic imaging of highly attenuating and scattering materials. A series of tests were conducted on a 60 mm thick carbon fiber reinforced polymer benchmark sample with known defects using a custom-made pulse-compression-based phased array system. Sector scan and total focusing method images of the sample were obtained with the developed system and were compared with those reconstructed by using a commercial pulse-echo phased array system. While an almost identical sensitivity was found in the near field, the pulse-compression-based system surpassed the standard one in the far-field producing a more accurate imaging of the deepest defects and of the backwall of the sample.


2011 ◽  
Vol 343-344 ◽  
pp. 142-149 ◽  
Author(s):  
Jian Shi ◽  
Kiyoshi Kemmochi ◽  
Li Min Bao

The objective of the present study is to investigate the effect of pyrolysis time and temperature on the mechanical properties of recycled carbon fiber, based on tensile strength measurements, determining the optimum decomposition conditions for carbon fiber-reinforced polymers (CFRPs) by superheated steam. In this research, CFRPs were efficiently depolymerized and reinforced fibers were separated from resin by superheated steam. Tensile strength of fibrous recyclates was measured and compared to that of virgin fiber. Although tensile strength of recycled fibers were litter lower than that of virgin fiber, under some conditions tensile strength of recycled fibers were close to that of virgin fiber. With pyrolysis, some char residue from the polymer remains on the fibers and degrees of char on the recycled fibers were closely examined by scanning electron microscopy.


Biomaterials ◽  
2021 ◽  
pp. 120719
Author(s):  
Corrine Ying Xuan Chua ◽  
Hsuan-Chen Liu ◽  
Nicola Di Trani ◽  
Antonia Susnjar ◽  
Jeremy Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document