Highly sensitive and stretchable strain sensors based on chopped carbon fibers sandwiched between silicone rubber layers for human motion detections

2019 ◽  
Vol 54 (3) ◽  
pp. 423-434 ◽  
Author(s):  
MB Azizkhani ◽  
Sh Rastgordani ◽  
A. Pourkamali Anaraki ◽  
J Kadkhodapour ◽  
B Shirkavand Hadavand

Tuning the electromechanical performance in piezoresistive composite strain sensors is primarily attained through appropriately employing the materials system and the fabrication process. High sensitivity along with flexibility in the strain sensing devices needs to be met according to the application (e.g. human motion detection, health and sports monitoring). In this paper, a highly stretchable and sensitive strain sensor with a low-cost fabrication is proposed which is acquired by embedding the chopped carbon fibers sandwiched in between silicone rubber layers. The electrical and mechanical features of the sensor were characterized through stretch/release loading tests where a considerably high sensitivity (the gauge factor about 100) was observed with very low hysteresis. This implies high strain reversibility (i.e. full recovery in each cycle) over 700 loading cycles. Moreover, the sensors exhibited ultra-high stretchability (up to ∼300% elongation) in addition to a low stiffness meaning minimal mechanical effects induced by the sensor for sensitive human motion monitoring applications including large and small deformations. The results suggest the promising capability of the present sensor in reflecting the human body motion detection.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2333
Author(s):  
Huiying Shen ◽  
Huizhen Ke ◽  
Jingdong Feng ◽  
Chenyu Jiang ◽  
Qufu Wei ◽  
...  

Owing to the multi-dimensional complexity of human motions, traditional uniaxial strain sensors lack the accuracy in monitoring dynamic body motions working in different directions, thus multidirectional strain sensors with excellent electromechanical performance are urgently in need. Towards this goal, in this work, a stretchable biaxial strain sensor based on double elastic fabric (DEF) was developed by incorporating carboxylic multi-walled carbon nanotubes(c-MWCNTs) and polypyrrole (PPy) into fabric through simple, scalable soaking and adsorption-oxidizing methods. The fabricated DEF/c-MWCNTs/PPy strain sensor exhibited outstanding anisotropic strain sensing performance, including relatively high sensitivity with the maximum gauge factor (GF) of 5.2, good stretchability of over 80%, fast response time < 100 ms, favorable electromechanical stability, and durability for over 800 stretching–releasing cycles. Moreover, applications of DEF/c-MWCNTs/PPy strain sensor for wearable devices were also reported, which were used for detecting human subtle motions and dynamic large-scale motions. The unconventional applications of DEF/c-MWCNTs/PPy strain sensor were also demonstrated by monitoring complex multi-degrees-of-freedom synovial joint motions of human body, such as neck and shoulder movements, suggesting that such materials showed a great potential to be applied in wearable electronics and personal healthcare monitoring.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Heng Zhang ◽  
Dan Liu ◽  
Jeng-Hun Lee ◽  
Haomin Chen ◽  
Eunyoung Kim ◽  
...  

AbstractFlexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications. Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities, existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity. Here, an ultrasensitive, highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers. The bilayer sensor consists of an aligned carbon nanotube (CNT) array assembled on top of a periodically wrinkled and cracked CNT–graphene oxide film. The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched, leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100% strain. The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3, to the benefit of accurate detection of loading directions by the multidirectional sensor. This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity, selectivity, and stretchability, demonstrating promising applications in full-range, multi-axis human motion detection for wearable electronics and smart robotics.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4186-4193
Author(s):  
He Gong ◽  
Chuan Cai ◽  
Hongjun Gu ◽  
Qiushi Jiang ◽  
Daming Zhang ◽  
...  

Electrospun carbon sponge was used to measure tensile strains with a high gauge factor.


2016 ◽  
Vol 4 (2) ◽  
pp. 1600190 ◽  
Author(s):  
Guofa Cai ◽  
Jiangxin Wang ◽  
Kai Qian ◽  
Jingwei Chen ◽  
Shaohui Li ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4553 ◽  
Author(s):  
Yun Xia ◽  
Qi Zhang ◽  
Xue E. Wu ◽  
Tim V. Kirk ◽  
Xiao Dong Chen

Presented is a flexible capacitive strain sensor, based on the low cost materials silicone (PDMS) and carbon black (CB), that was fabricated by casting and curing of successive silicone layers—a central PDMS dielectric layer bounded by PDMS/CB blend electrodes and packaged by exterior PDMS films. It was effectively characterized for large flexion-angle motion wearable applications, with strain sensing properties assessed over large strains (50%) and variations in temperature and humidity. Additionally, suitability for monitoring large tissue deformation was established by integration with an in vitro digestive model. The capacitive gauge factor was approximately constant at 0.86 over these conditions for the linear strain range (3 to 47%). Durability was established from consistent relative capacitance changes over 10,000 strain cycles, with varying strain frequency and elongation up to 50%. Wearability and high flexion angle human motion detection were demonstrated by integration with an elbow band, with clear detection of motion ranges up 90°. The device’s simple structure and fabrication method, low-cost materials and robust performance, offer promise for expanding the availability of wearable sensor systems.


2018 ◽  
Vol 6 (39) ◽  
pp. 10524-10531 ◽  
Author(s):  
Hamid Souri ◽  
Debes Bhattacharyya

Recent advancements in stretchable, flexible and wearable strain sensors, based on natural materials, show their interesting potential for use in human motion detection, soft robotics and human–machine interactions.


Sign in / Sign up

Export Citation Format

Share Document