Morphological, physical, and mechanical properties of silanized wood-polymer composite

2019 ◽  
Vol 54 (11) ◽  
pp. 1403-1412
Author(s):  
Maryam Ghorbani ◽  
Najmeh Poorzahed ◽  
S Mojtaba Amininasab

For investigation on the effect of silane compound on practical properties of poplar wood polymer composite, samples were impregnated using vacuum/pressure method with 3-trimethoxysilyl propyl methacrylate, and subsequently with styrene, methyl methacrylate, and mixtures of styrene/methyl methacrylate. Field emission scanning electron microscopy observations and Fourier transform infrared analysis indicated that styrene/methyl methacrylate copolymerized with 3-trimethoxysilyl propyl methacrylate and the resultant polymer tightly contacted to the wood cell walls without noticeable gaps. Impregnation with styrene resulted in a higher density of wood polymer composite compared to methyl methacrylate, which was more obvious in the presence of 3-trimethoxysilyl propyl methacrylate. Mechanical strength of the wood polymer composites improved and the highest strength was obtained for the 3-trimethoxysilyl propyl methacrylate/styrene/methyl methacrylate-modified samples. Maximum hardness was found in 3-trimethoxysilyl propyl methacrylate/styrene/methyl methacrylate-modified samples due to the cross-link formation between modified cell wall and polymer.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5141-5155
Author(s):  
Piotr Borysiuk ◽  
Jacek Wikowski ◽  
Krzysztof Krajewski ◽  
Radosław Auriga ◽  
Adrian Skomorucha ◽  
...  

This study investigated the possibility of applying flat-pressed wood-polymer composites in conditions of high humidity. The experiment involved three variants of wood-polymer composite panels 16 mm thick, and 680 kg per m3 density. The wood particles were bonded with polyethylene. The share of polyethylene in the core layer was fixed at 50%, while in the face layers the content was varied (40%, 50%, or 60%). The following parameters were examined: modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), screw holding (SH), thickness swelling (TS), water absorption (WA), susceptibility to drilling and milling, wettability and surface free energy, and resistance to mold. The results were compared to particleboard glued with urea-formaldehyde resin. The wood-polymer composite had lower MOR and MOE values and similar IB and SH values. The panels indicated a remarkably higher water resistance (lower TS and WA values) with good surface wettability and high resistance to mold fungi. Additionally, the composites were easier to machine, e.g. drilling or milling, in comparison to standard particleboards.


2021 ◽  
Vol 410 ◽  
pp. 593-598
Author(s):  
Anton M. Kuzmin ◽  
Nadir Ayrilmis ◽  
Vladimir N. Vodyakov

This paper is devoted to the study of the technological process for the production of tape from polyethylene and wood-polymer composite by extrusion. At the first stage, the wood-polymer composite granulate was obtained on a co-rotating twin-screw extruder. The tape was made on a Rheomex 19/25 PolyLab OS single-screw extruder with a barrel length L/D = 25. The processing temperature of the wood-polymer composite was in the range of 145 ... 160°C. The tensile strength and elasticity modulus in tension, water absorption per day and density were investigated for the developed wood-polymer composite and polyethylene. It has been found out that for the developed wood-polymer composite, the strength and elastic modulus along the stretch direction increase by 11% and 6%, respectively. Orientation stretching has a significant effect on the physical and mechanical properties of wood-polymer composites.


2011 ◽  
Vol 311-313 ◽  
pp. 177-180
Author(s):  
Yong Feng Li ◽  
Yun Lin Fu ◽  
Hua Wei Huang ◽  
Yi Xing Liu

Michelia macclurei wood with moderate strength is a fast-growing wood in South China. However, it has not been fully utilized. We first prepared it into wood-polymer composite with purpose of good performance by impregnating methyl methacrylate monomer (MMA) into wood pores and following in-situ polymerization. The micro structure of wood-polymer composite, and the morphology and reaction of polymer in wood were characterized by SEM, FTIR and XRD. The SEM observation showed that the MMA monomer polymerized into polymer under the employed conditions and filled up wood cell cavity. FTIR analysis indicated that the monomer rarely reacted with wood cell wall during its polymerization. XRD characterized that the polymer from MMA monomer mainly physically existed in wood pores and remained as an amorphous form.


2012 ◽  
Vol 174-177 ◽  
pp. 826-829
Author(s):  
Yong Feng Li ◽  
Xiao Ying Dong ◽  
Yi Xing Liu

The fast-growing poplar wood, Populus ussuriensis Kom, was prepared into wood-polymer composite by the in-situ polymerization of methyl methacrylate (MMA) and styrene (St) under vacuum/pressure and subsequent catalyst-thermal conditions. SEM observation, FTIR, XRD and DMA analysis indicated that the resulted polymer well filled up wood cell lumen in an amorphous form and physically reinforce wood matrix, which resulted in the improvement of glass transition temperature and storage modulus of wood. Such method could endow low-quality wood with potential value-added applications.


2015 ◽  
Vol 1122 ◽  
pp. 165-168
Author(s):  
Anna Benešová ◽  
Jan Vanerek

The contribution deals with the durability of modified wood-polymer composite samples intended to alternate solid wood non-bearing structures (fences, sidings). The modification was made to the polymer matrix, which is partly consisting of commercially available regranulate. Four types of composite with varying amount of regranulate admixture are exposed to adverse ambience simulating the external conditions through moisture, freeze and high temperature action. The aim of the research is to determine the influence of regranulate share on the visual and mechanical characteristic of the material, which would be decisive in the process of specific tile creation.


2017 ◽  
Vol 6 (4) ◽  
pp. 153-161
Author(s):  
Абразумов ◽  
Vladimir Abrazumov ◽  
Котенко ◽  
Vladimir Kotenko ◽  
Ганиева ◽  
...  

Here a mathematical model of the process of surface ribbing of pieces made of wood-polymer composites based on solution of an equation of thermal conductivity using effective characteristics of thermal conductivity and thermal capacity of composites with different types of polymer matrixes is offered. А characteristic feature of wood-polymer composite boards, that their linear dimension is bigger than their thickness, was used in creating a mathematical model. This feature provides an opportunity to suppose that while heating the wood-polymer composite board in the thermal environment chаmber with infrared heating element, the change of the temperature will proceed only in the direction which is perpendicular to the surface of the board.


Author(s):  
Md.Musharof Hussain Khan ◽  
Ivan Deviatkin ◽  
Jouni Havukainen ◽  
Mika Horttanainen

Abstract Purpose Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials. Methods Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet. Result and discussion In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet. Conclusions The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.


2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


Sign in / Sign up

Export Citation Format

Share Document