Oral Organoids: Progress and Challenges

2021 ◽  
pp. 002203452098380
Author(s):  
X. Gao ◽  
Y. Wu ◽  
L. Liao ◽  
W. Tian

Oral organoids are complex 3-dimensional structures that develop from stem cells or organ-specific progenitors through a process of self-organization and re-create architectures and functionalities similar to in vivo organs and tissues in the oral and maxillofacial region. Recently, striking advancements have been made in the construction and application of oral organoids of the tooth, salivary gland, and tongue. Dental epithelial and mesenchymal cells isolated from tooth germs or derived from pluripotent stem cells could generate tooth germ–like organoids by self-organization in a specific culture system. Tooth organoids can also be constructed based on tissue engineering principles by seeding stem cells on a scaffold with the bioregulatory functions of odontogenic differentiation. Two main approaches have been used to construct salivary gland organoids: 1) incubation of salivary gland–derived stem/progenitor cells in a 3-dimensional culture system to form the structure of the gland through mimicking regenerative processes and 2) inducing of pluripotent stem cells to generate embryonic salivary glands by replicating the development process. Taste bud organoids can be generated by embedding isolated circumvallate papilla tissue in Matrigel with a mixture of growth factors, while lingual epithelial organoids have been constructed using lingual stem cells in a suitable culture system containing specific signaling molecules. These oral organoids usually maintain the main functions and characteristic structures of the corresponding organ to a certain extent. Furthermore, using cells isolated from patients, oral organoids could replicate specific diseases such as maxillofacial tumors and tooth dysplasia. Until now, oral organoids have been applied in the study of mechanisms of tooth development, pathology and regeneration of the salivary gland, and precision therapeutics for tongue cancer. These findings strongly demonstrate that the organoid technique is a novel paradigm for the study of the development, pathology, and regeneration of oral and maxillofacial tissue.

Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei Liu ◽  
Shi Chen ◽  
Yaxing Xu ◽  
Yulin Lyu ◽  
Jinlin Wang ◽  
...  

AbstractExtended pluripotent stem (EPS) cells have shown great applicative potentials in generating synthetic embryos, directed differentiation and disease modeling. However, the lack of a xeno-free culture condition has significantly limited their applications. Here, we report a chemically defined and xeno-free culture system for culturing and deriving human EPS cells in vitro. Xeno-free human EPS cells can be long-term and genetically stably maintained in vitro, as well as preserve their embryonic and extraembryonic developmental potentials. Furthermore, the xeno-free culturing system also permits efficient derivation of human EPS cells from human fibroblast through reprogramming. Our study could have broad utility in future applications of human EPS cells in biomedicine.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
weina cui ◽  
lei ye ◽  
albert jang ◽  
qiang xiong ◽  
pengyuan zhang ◽  
...  

Rationale and Objective: Human induced pluripotent stem cells (hiPSCs) hold promise for myocardial repair following injury. Here, we investigated the functional impact and myocardial heterogeneity of bioenergetics using a porcine model of post infarction LV remodeling, and 2 dimensional chemical shift imaging (2D CSI) P-31 MR spectroscopy. Methods and Results: Ischemia-reperfusion (I/R) injury was surgically induced by occlusion distal LAD (OCCL) for 60 minutes in female Yorkshire farm swine (≈15kg), then randomly assigned to experimental groups: 1) 16 million human induced pluripotent stem cells (hiPSC) derived cardio myocytes (CMs), smooth muscle cells (SMC) and Endothelia cells (ECs) were directly myocardial injected through an epicardial fibrin patch (P+Cell, n= 4), 2) open patch (fibrin patch with no cell) were placed over the injury site (P w/o Cell, n=4). Size matched normal (n=9) and OCCL only (n=5) pigs were also studied. Four weeks after I/R, 2D CSI MRS studies were performed in a 9.4T/ 65 cm bore magnet. In vivo myocardial energetic mapping was achieved using 31 P 2D CSI. To measure the forward flux rate PCr to ATP, 2D CSI data were acquired with or without saturation on ATPγ resonance. I/R injury has a heterogeneous effect on LV myocardial bioenergetics. Myocardial creatine phosphate (PCr)/ATP ratio is significantly decreased in border zone (BZ) of the infarction than the myocardial areas remote from the scar (RZ) in cell treated and patch only groups (1.54+/- 0.05 vs 2.25 +/- 0.10, 1.49+/-0.07 vs 2.34 +/- 0.07, BZ vs RZ, p<0.05). The BZ PCr/ATP ratio is improved in the cell treated group compared with open patch group (1.71 +/- 0.05 vs. 1.54 +/- 0.05, p<0.05). The forward flux rate constant of PCr/ATP (k pcr→ATP ) in the border zone is slightly increased in cell treated group compared with patch only group (0.29 +/- 0.02 vs 0.22 +/- 0.04 , p<0.05) Conclusion: The approach of 2D CSI 31 P MRS can effectively map the heterogeneity of myocardial ATP flux rate via CK In Vivo porcine hearts. Postinfarction LV remodeling heart manifests pronounced heterogeneity in myocardial bioenergetics with most severe alterations in BZ. Cell therapy may effectively improve BZ myocardial bioenergetics.


2019 ◽  
Vol 20 (22) ◽  
pp. 5752 ◽  
Author(s):  
Heng Liang Tan ◽  
Andre Choo

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.


Sign in / Sign up

Export Citation Format

Share Document