Effects of Woven Fabric Construction and Color on Ultraviolet Protection

2009 ◽  
Vol 79 (4) ◽  
pp. 351-359 ◽  
Author(s):  
Polona Dobnik Dubrovski ◽  
Darko Golob
2006 ◽  
Vol 36 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Jianbin Nie ◽  
Shiyan Lu ◽  
Bohong Gu

2014 ◽  
Vol 18 (2) ◽  
pp. 96-107
Author(s):  
Abdel-Fattah M. Seyam ◽  
Sanaa S. Saleh ◽  
Mamdouh Y. Sharkas ◽  
Heba Z. AbouHashish

A range of intricate finished seamless shaped garments have been developed with the aim to fit predetermined sizes. The shape is created by using woven tubular fabrics with differential shrinkage in the same garment. The differential shrinkage is obtained by altering the fabric construction parameters at strategic locations along the length of the garment. The construction arameters include different weaves (plain, 2/2 basket, 1/3 twill, 2/2 twill, and crowfoot), weft densities, weft yarn counts, and weft yarns with different shrinkages (cotton, cotton that contains spandex, and cotton/polyester yarns). The weft yarn tension is used as an additional parameter to influence fabric shrinkage. A total of thirty-three woven fabrics are formed to establish the relationship between the construction parameters, weft tension, and shrinkage of the finished woven fabric. The relationship is used to produce a range of intricate garments with inherent shapes and predetermined sizes.


Author(s):  
Marzia Islam ◽  
Tarifun Akter ◽  
Jannatul Ferdush ◽  
Kamrunnahar Kamrunnahar

In thisstudy, the effect of fabric density and different colors (black and red) on ultraviolet protection factor of woven fabric investigated. The fabric of different composition (100% cotton, 60/40 CVC), two color (black, red) and various density (Ends per inch, Picks per inch) collected. Then UPF rating was measured by spectrophotometer in vitro method. Experimental result showed that higher the fabric density and weight; higher the protection from ultraviolet rays. Besides, it also revealed that black fabric has more UV protection ability than the red one. Another finding of this study is that polyester content increases the UPF value.


2018 ◽  
Vol 30 (4) ◽  
pp. 536-547
Author(s):  
Adeela Nasreen ◽  
Muhammad Umair ◽  
Khubab Shaker ◽  
Syed Talha Ali Hamdani ◽  
Yasir Nawab

Purpose The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air permeability and thickness of fabrics. Design/methodology/approach Total 24 fabrics samples were developed using two 3D structures and two weft materials. In warp direction cotton (CT) yarn and in weft direction polypropylene (PP) and polyester (PET) were used. Air permeability, thickness and UPF testings were performed and relationship among fabric layers, air permeability, thickness and UPF was developed. Findings UPF and thickness of fabrics increases with number of fabric layers, whereas air permeability decreases with the increase in number of fabric layers. Furthermore, change of multilayer structure from angle interlock to orthogonal interlock having same base weave does not give significant effect on UPF. However, change of material from polyester (PET) to polypropylene (PP) has a dominant effect on UPF. Minimum of three layers of cotton/polyester fabric, without any aid of ultraviolet radiation (UV) resistant coating, are required to achieve good. Cotton/polyester fabrics are more appropriate for outdoor application due to their long-term resistance with sunlight exposure. Originality/value Long-term exposure to UV is detrimental. So, there is need of proper selection of material and fabric to achieve ultraviolet protection. 3D fabrics have yarns in X, Y as well as in Z directions which provide better ultraviolet protection as compared to two dimensional (2D) fabrics. In literature, mostly work was done on ultraviolet protection of 2D fabrics and surface coating of fabrics. There is limited work found on UPF of 3D woven fabrics.


2018 ◽  
Vol 89 (6) ◽  
pp. 948-958 ◽  
Author(s):  
Katarzyna Marciniak ◽  
Katarzyna Ewa Grabowska ◽  
Zbigniew Stempień ◽  
Izabela Luiza Ciesielska-Wróbel

This paper presents the continuation of research on shielding efficiency (SE) of electromagnetic radiation (EMR) by woven fabric made of cotton (warps and wefts) and a hybrid yarn (wefts). This hybrid yarn was made of stainless steel yarn by Bekinox wrapped with an enamelled copper wire from Synflex Elektro GmbH, Germany. The pitch of copper coil on a hybrid yarn equals 3 mm. The wefts were introduced into the fabric in the following order: 1 hybrid yarn, 1 cotton yarn, 1 hybrid yarn, 1 cotton yarn, etc. The construction of this specific fabric was proven to be the most efficient in terms of the hybrid weft construction and the fabric construction to shield EMR among other previously tested fabrics with different weft configuration. The current study proposes to verify the effect of the number of layers of the fabrics and their mutual configuration on the final SE of the multilayered set. Some of the most interesting findings of this study are that increasing the number of layers placed on top of one another with an offset angle of 0° to more than two does not provide a higher SE; however, using three such layers provides an SE of 56 dB, which is over two times higher than that provided by a single layer. Increasing the number of layers of fabric aligned at an angle of 45° provides a higher SE only for a frequency of 30 MHz.


2017 ◽  
Vol 48 (3) ◽  
pp. 539-558
Author(s):  
Daniel Weise ◽  
Michael Vorhof ◽  
Reimar Unger ◽  
Gerald Hoffmann ◽  
Chokri Cherif

Joining textile layers to a preform using patches is of utter importance in regards to producing structural elements made of fibre-reinforced materials with complex geometry, and repairing fibre-reinforced composites in an efficient and safe manner. Material-efficient and load-specific design and integration of the patch are essential in relation to the performance of the joint as well as the strengthening of the composite structure after a damaging event. Hence, in this study, the stress–strain behaviour of carbon-fibre-reinforced epoxy-composites, which are joined by a patch designed as double-lap joint, will be investigated. It will be shown that the woven fabric morphology (surface structure) and the woven fabric construction (weave pattern) of the join partners exert a noticeable influence on the stability of the patched composite samples. The use of leno non-crimp fabrics as patch structures, which provide an increased joint surface in comparison to the likewise examined twill fabrics, enables a growth in joint strength, provided that the dimensions of the patch remain the same.


Sign in / Sign up

Export Citation Format

Share Document