A Model of Rigid Bodies for Plain-Weave Fabrics Based on the Dynamics of Multibody Systems

2010 ◽  
Vol 80 (19) ◽  
pp. 1995-2006 ◽  
Author(s):  
Mingxing Xiao ◽  
Zhaofeng Geng
1991 ◽  
Vol 58 (1) ◽  
pp. 215-221 ◽  
Author(s):  
J. J. McPhee ◽  
R. N. Dubey

The equations of motion are derived for a system with inertial properties that are varying in time as a result of known relative motions between the rigid bodies comprising the system. This vector-dyadic formulation has been encoded into a computer program, making use of the conformal rotation vector for the representation of rotations. The numerical simulation of two different physical systems is presented in order to illustrate the dynamic effects of the changing inertial properties, and the usefulness of the encoded formulation for modeling these effects.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Pierre Joli ◽  
Madeleine Pascal ◽  
René Gibert

Abstract Current dynamic simulation programs are able to calculate the continuous motions of articulated systems or more general systems of rigid bodies in the absence of contact between members of the system or between the system and its environment. Some are able to simulate the effects of isolated contacts and impacts but none are able to simulate the motion with unrestricted multiple concurrent contacts. However, in special robotic programs such as robots performing assembly tasks or walking, it would be very interesting to simulate appropriate commands before implementing them on the robots. This paper develops intrinsic problems of collision to produce an efficient computational algorithm. This algorithm handles the detection of collision in three dimensions, the reduction of the integration step in order to avoid interpenetration between the bodies before impact, the jump velocity caused by a new collision and indicator magnitudes which determine the addition or deletion of constraints.


Sign in / Sign up

Export Citation Format

Share Document