Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition

2012 ◽  
Vol 82 (20) ◽  
pp. 2137-2148 ◽  
Author(s):  
Z Yildiz ◽  
I Usta ◽  
A Gungor

Polypyrrole was deposited on polyester yarns by vapour phase polymerization technique. Ferric chloride was used as an initiator. In order to determine the effect of the initiator concentration on polymerization process, four different initiator concentrations (0.2, 0.4, 0.6 and 0.8 mol/l) were used. The effect of the initiator in terms of tensile properties, electrical resistivities and morphological properties of the yarns was investigated. The polypyrrole deposited polyester yarns were then weaved in a handloom to form fabric for the investigation of surface resistivity and electromagnetic shielding effectiveness. Scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared analyses illustrated that polypyrrole has penetrated into the yarn structure and the highest polypyrrole deposition was obtained at the initiator concentration of 0.6 mol/l. Also, the highest electromagnetic shielding effectiveness value and the lowest surface resistivity were obtained at this concentration.

2015 ◽  
Vol 749 ◽  
pp. 265-269 ◽  
Author(s):  
Jia Horng Lin ◽  
Ting An Lin ◽  
Chien Teng Hsieh ◽  
Jan Yi Lin ◽  
Ching Wen Lou

This study uses 0.08mm copper wire and nickel-coated copper wire as the core and 75 D far infrared filament as the wrapped material to manufacture Cu/FIR-PET wrapped yarn, Ni-Cu/FIR-PET wrapped yarn and Ni-Cu/Cu/FIR-PET wrapped yarn. The three optimum metallic/FIR-PET wrapped yarns are then weaving into Cu/FIR-PET woven fabrics, Ni-Cu/FIR-PET woven fabrics and Ni-Cu/Cu/FIR-PET woven fabrics. Tensile property of metallic/FIR-PET wrapped yarns, electrical resistance of metallic/FIR-PET wrapped yarns, surface resistivity of metallic/FIR-PET woven fabrics and electromagnetic shielding effectiveness of metallic/FIR-PET woven fabric are discussed. According to the results, the optimum tenacity and elongation are chosen as 7 turns/ cm, electrical resistance of Ni-Cu/Cu/FIR-PET wrapped presents the best value, Cu/FIR-PET woven fabric has the lowest surface resistivity and Ni-Cu/Cu/FIR-PET woven fabric shows the best EMSE at 37.61 dB when the laminating-layer number is double layer and laminating at 90 ̊. In this study, three kinds of metallic/FIR-PET woven fabrics are successfully manufactured and looking forward to applying on industrial domains.


2016 ◽  
Vol 47 (5) ◽  
pp. 656-673 ◽  
Author(s):  
FZ Engin Sagirli ◽  
ES Kayali ◽  
AS Sarac

In this study, polypyrrole was deposited separately on barium titanate, barium titanate-poly (acrylonitrile-co-methylacrylate) nanocomposite-coated textile fabrics by an in-situ chemical polymerization process. Electromagnetic shielding effectiveness, electrical conductivity, chemical structure, and morphology of fabrics were fully characterized and systematically studied for investigation of individual effects of barium titanate, pyrrole polymer, and barium titanate-poly (acrylonitrile-co-methylacrylate) on obtained fabrics’ conductivity and shielding behaviour. Electromagnetic shielding effectiveness of the fabrics was determined according to the ASTM D4935-10 protocol, by using a coaxial transmission line measurement technique in the frequency range of 15–3000 MHz. Electrical characteristics were measured by the two-end method. Electromagnetic shielding effectiveness data suggested that polypyrrole-coated fabrics had better electromagnetic shielding effectiveness than polypyrrole-barium titanate and barium titanate-poly (acrylonitrile-co-methylacrylate)-coated fabrics. On the other hand, conductivity increased due to the interaction between polypyrrole and barium titanate-poly (acrylonitrile-co-methylacrylate), with fabric conductivity values also increased with the use of barium titanate. Spectroscopic characterizations of coated fabrics were determined using Fourier transform infrared spectroscopy. Analyses demonstrated that there is a strong interaction between cotton and polypyrrole and barium titanate, and also with poly (acrylonitrile-co-methylacrylate)-barium titanate. Morphological characterizations of the coated fabrics were examined by scanning electron microscopy. Colour measurements of fabric samples were performed for determination of colour intensity as a function of polymerization efficiency.


2011 ◽  
Vol 183-185 ◽  
pp. 1563-1567 ◽  
Author(s):  
Hai Bing Liu ◽  
Li Juan Wang

In this paper we prepared electroless Ni-plated wood veneers using two Pa activation methods. One is the traditional Pa colloid activation and the other uses Pa2+ions. SEM-EDS results indicated that the coatings were continuous, uniform and compact with a P content of lower than 4 wt.%. XRD analysis showed that the coatings were crystalline, which was related to the low P content. The plated wood veneers exhibit good electro-conductivity with surface resistivity of lower than 0.3 Ω cm-2and higher electromagnetic shielding effectiveness of over 60 dB in frequencies from 10 MHz to 1.5 GHz.


2013 ◽  
Vol 677 ◽  
pp. 157-160
Author(s):  
Ying Chen ◽  
Yuan Liang Li ◽  
Xue Gang Ma ◽  
Rong Li Sang

Nickel and graphite are selected as conductive powders. Water-based adhesive are selected as coating. Electromagnetic shielding textiles were prepared with coating method. In order to improve the shielding effectiveness of textiles, multilayer compositing is used. The surface resistivity, coating amount, electromagnetic shielding effectiveness are tested to select the best process.


2020 ◽  
Vol 71 (01) ◽  
pp. 41-49 ◽  
Author(s):  
ÖZKAN İLKAN

In this study, it was aimed to determine electromagnetic shielding effectiveness, antibacterial activity, surface resistivityand bending rigidity properties of 1×1 rib knitted fabrics. For this purpose, copper (Cu), stainless steel (SS) and silver(Ag) wires were commingled with two nylon filaments to produce metal composite yarns. 1×1 rib fabrics were producedby these composite yarns. Electromagnetic shielding effectiveness (EMSE), antibacterial activity, surface resistivity andbending rigidity of the composite knits were measured. Electromagnetic shielding measurements of samples wereconducted between 1.0–5.0 GHz frequency. Antibacterial activity test was applied according to AATCC 100 standardagainst K. pneumoniae and S. aureus bacteria. Results showed that knitted fabrics generally have lower SE values than10 dB at wale direction. The double layer samples provide higher EMSE than single layer samples for all metal types.Maximum EMSE value was obtained as 57.12 dB. The use of metal wire significantly reduced surface resistivity ofknitted fabrics. Copper composite knitted fabrics showed 99 % antibacterial activity against both bacterial species. Whencompared to the control sample, the use of metal wire significantly increased the rigidity of the samples.


2010 ◽  
Vol 97-101 ◽  
pp. 1790-1793
Author(s):  
Jia Horng Lin ◽  
Yu Tien Huang ◽  
Chin Mei Lin ◽  
Yi Chang Yang ◽  
Chien Teng Hsieh ◽  
...  

According to the results, when low melting polyester fiber increased to be 20%, the electromagnetic shielding/ far infrared ray nonwoven obtained the optimum burst strength, maximum breaking force and maximum tear strength, and they were as follows: burst strength was 4.2 kgf/cm2; maximum breaking force was 153.59 N in the cross machine direction and 70.80 N in the machine direction; maximum tear strength was 215.77 N in cross machine direction and 117.07 N in machine direction; and optimum electromagnetic shielding effectiveness (EMSE) was 45 dB.


Sign in / Sign up

Export Citation Format

Share Document