Stability analysis for discrete-time switched systems with uncertain time delay and affine parametric uncertainties

2016 ◽  
Vol 40 (4) ◽  
pp. 1150-1157 ◽  
Author(s):  
NA Baleghi ◽  
MH Shafiei

This paper studies the stability conditions of a discrete-time switched linear system in the presence of affine parametric uncertainties and an unknown time delay. Based on a discrete Lyapunov functional, sufficient conditions are investigated to determine the upper bound of admissible time delay in the discrete-time switched system. Furthermore, the average dwell time method, which is an effective tool for stability analysis of switched systems, is used to derive the exponential stability conditions. These conditions characterize the switching signal, which does not depend on any uncertainties. Finally, numerical examples are provided to verify and compare the theoretical results.

2017 ◽  
Vol 24 (20) ◽  
pp. 4921-4930 ◽  
Author(s):  
Nasrollah Azam Baleghi ◽  
Mohammad Hossein Shafiei

This paper studies the delay-dependent stability conditions for time-delay discrete-time switched systems. In the considered switched system, there are uncertain terms in each subsystem due to affine parametric uncertainties. Additionally, each subsystem has a time-varying state delay which adds more complexity to the stability analysis. Based on the Lyapunov functional approach, the sufficient conditions are extracted to determine the admissible upper bound of the time-varying delay for guaranteed stability. Furthermore, a class of switching signals is identified to guarantee the exponential stability of the uncertain time-delay switched system. The main advantage of the suggested switching signals is its independency to the uncertainties. Furthermore, these signals are only constrained by a determined average dwell time (may be chosen arbitrarily). Finally, a numerical example is provided to demonstrate the efficiency of the proposed method and also the reduction of conservatism in finding the admissible upper bound of time-delay in comparison with other stability analysis approaches.


2021 ◽  
Author(s):  
Ran Yang ◽  
Song Liu ◽  
Xiaoyan Li ◽  
Jian Xiao

Abstract This article addresses stability of fractional switched systems (FSSs) with stable and unstable subsystems. First, several algebraic conditions are presented to guarantee asymptotic stability by applying multiple Lyapunov function (MLF) method, dwell time technique and fast-slow switching mechanism. Then, some stability conditions which have less conservation are also provided by utilizing average dwell time (ADT) technique and the property of Mittag-Leffler function. In addition, sufficient conditions on asymptotic stability of delayed FSSs are obtained by virtue of fractional Razumikhin technique. Finally, several examples are given to reveal that the conclusions obtained are valid.


2019 ◽  
Vol 17 (1) ◽  
pp. 716-727
Author(s):  
Leipo Liu ◽  
Hao Xing ◽  
Xiangyang Cao ◽  
Xiushan Cai ◽  
Zhumu Fu

Abstract This paper considers the nonfragile observer-based guaranteed cost finite-time control of discrete-time positive impulsive switched systems(DPISS). Firstly, the positive observer and nonfragile positive observer are designed to estimate the actual state of the underlying systems, respectively. Secondly, by using the average dwell time(ADT) approach and multiple linear co-positive Lyapunov function (MLCLF), two guaranteed cost finite-time controller are designed and sufficient conditions are obtained to guarantee the corresponding closed-loop systems are guaranteed cost finite-time stability(GCFTS). Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Leipo Liu ◽  
Hao Xing ◽  
Xiangyang Cao ◽  
Zhumu Fu ◽  
Shuzhong Song

This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF) and average dwell time (ADT) approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB). Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.


2020 ◽  
Vol 42 (14) ◽  
pp. 2719-2732
Author(s):  
Bingxin Xue ◽  
Ruihua Wang ◽  
Shumin Fei

This paper addresses the [Formula: see text] filtering problem for a class of discrete-time switched systems by using an admissible edge-dependent average dwell time (AED-ADT) method. By means of a convex combination of positive definite matrices, a novel multiple piecewise convex Lyapunov function (MPCLF) is constructed, which can loosen the restrictions of Lyapunov function at switching points and interval interior points. Based on the MPCLF approach, sufficient conditions are established such that the filtering error system is globally uniformly exponentially stable (GUES) and a prescribed noise attenuation level in an [Formula: see text] sense is achieved. Moreover, the corresponding time-varying [Formula: see text] filters are given as well. Finally, the results of the simulation illustrate the feasibility and effectiveness of the proposed approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shengchun Yu ◽  
Guici Chen ◽  
Yi Shen

The robustH∞control problem for discrete-time stochastic interval system (DTSIS) with time delay is investigated in this paper. The stochastic interval system is equivalently transformed into a kind of stochastic uncertain time-delay system firstly. By constructing the appropriate Lyapunov-Krasovskii functional, the sufficient conditions for the existence of the robustH∞controller for DTSIS are obtained in terms of linear matrix inequality (LMI) form, and the robustH∞controller is designed. Finally, a numerical example with simulation is given to show the effectiveness and correctness of the designed robustH∞controller.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yangming Zhang ◽  
Peng Yan

We are concerned with the stability problem for linear discrete-time switched systems with time delays. The problem is solved by using multiple Lyapunov functions to develop constructive tools for the exponential stability analysis of the switched time-delay system. Furthermore, the uncertainties of the switched systems are also taken into consideration. Sufficient delay-dependent conditions are derived in terms of the average dwell time for the exponential stability based on linear matrix inequalities (LMIs). Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document