Model predictive force control of hardware implementation for electro-hydraulic servo system

2018 ◽  
Vol 41 (5) ◽  
pp. 1435-1446 ◽  
Author(s):  
Mohamed El-Sayed M. Essa ◽  
Magdy AS Aboelela ◽  
MA Moustafa Hassan ◽  
SM Abdrabbo

This manuscript introduces the application of Model Predictive Control (MPC) for high force control precision in a real industrial electro-hydraulic servo system (EHSS). Moreover, it presents a fractional order control (FOC) and conventional controllers (CC) based on genetic algorithm (GA). The GA technique has been used to tune the parameters of FOC and CC approach. In order to verify the ability of the proposed controller applied to the hydraulic press machines emulator using EHSS, a hardware implementation of a test press system is also suggested and setup to be used in this research. As a result, the study has been investigated using a simulation model then verified via the experimental implementation. In fact, the EHSS plays an important role in many industrial applications, especially in flight simulators, aircraft landing gear system, material testing machine and hydraulic press machines for which the high accuracy and fast response of the force or pressure control are exceedingly necessary. Real-time experiments on the EHSS are carried out to evaluate the proposed control approach in a large system parameters variation of working environments. Considerable improvement in the performance generated by the designed MPC controller is compared with the traditional and fractional order controllers. Moreover, the results show that the performance criteria in terms of settling, rise times, system overshoots, system parameters variation and applying different test signals are good values in case of applying MPC over using FOC and CC in this study. As a general conclusion, one can conclude that the MPC has the priority of applying it in the field of the industrial EHSS. The obtained results are promising in the field of mechatronic.

2016 ◽  
Vol 826 ◽  
pp. 128-133 ◽  
Author(s):  
Hyo Gon Kim ◽  
Jong Won Lee ◽  
Yong Ho Choi ◽  
Jeong Woo Park ◽  
Jin Ho Suh

Because hydraulic actuator has higher power and force density, it is normally used in heavy load manipulator robots and industrial equipment which require high torque. Also, the hydraulic actuator is applied to underwater robots that need high performance maneuver in underwater operations. The force control has benefits to those kind of robots to ensure compliance with user or environment. However, the hydraulic actuator is difficult to control forces due to the non-linearity characteristic of the hydraulic servo system. In this paper, we propose a force control method with compensation of force derivative and natural velocity feedback. We also describe a method of applying it to the real system. In order to evaluate the effect of the proposed control method, the simulations and experiments were performed.


2013 ◽  
Vol 765-767 ◽  
pp. 1873-1876
Author(s):  
Xiu Juan Liu ◽  
Yan Chun Liu ◽  
Yue Ming Yang ◽  
Kai Zhao ◽  
Yi Zhu

Material experiment system of hydraulic servo system is subject to load disturbance and load disturbance is a function of standard mechanical parameters of rock samples. Rock mass is very discrete, anisotropy, composition is not single and inelastic[. Traditional tester can't get the complete stress-strain curve of rock[ material, in order to solve the shortage of the traditional hydraulic servo system, in this paper, the fuzzy PID control is successfully applied to the hydraulic servo system, through the experiments and get good effect.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 171988-172005
Author(s):  
Bin Yu ◽  
Qixin Zhu ◽  
Jing Yao ◽  
Junxiao Zhang ◽  
Zhipeng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document