Lion Algorithm with Levy Update: Load frequency controlling scheme for two-area interconnected multi-source power system

2019 ◽  
Vol 41 (14) ◽  
pp. 4084-4099 ◽  
Author(s):  
Deepesh Sharma ◽  
Naresh Kumar Yadav

In an interconnected multi-area power system, Load Frequency Control (LFC) is a main challenging problem. This paper presents the Fractional Order Proportional Integral (FOPI) controller for an interconnected two-area power system, wherein each area has multi-source power systems. The gains of the proposed controller are being optimized by Lion Algorithm (LA), utilizing an integral square error (ISE) criterion, to develop the proposed Lion with Levy Update-based FOPI controller (LLUFOPI). The proposed LA schedules the gain of the LLUFOPI controller by achieving the least possible error. Hence, the LLUFOPI controller assures better LFC in the two-area interconnected power system. The performance of the proposed controller is assessed by considering the practical constraints in power system such as Generation Rate Constraints (GRC), communication delay, AC/DC link, step load variation and Capacitive Energy Storage (CES) device. Finally, the simulation results show that the LLUFOPI controller provides a well- optimized gain that is 89% higher than the other algorithms with better stability. The Integral Square Error (ISE) value of the proposed controller is 81.1% lesser than the other algorithms. Better LFC in the two-area multi-source-interconnected power system is hence achieved with minimum ISE.

2016 ◽  
Vol 24 (1) ◽  
pp. 110-125 ◽  
Author(s):  
Pretty Neelam Topno ◽  
Saurabh Chanana

This paper introduces a tilt integral derivative controller as the supplementary controller for load frequency control of a two-area interconnected power system. The optimal value of parameters of the tilt integral derivative controller is evaluated using constrained nonlinear optimization by means of a performance index-based method. The proposed tilt integral derivative control offers superior properties such as simple parameter tuning and its performance does not compromise the occurrence of any parameter variations in the system. To verify these features of the controller, the test system is subjected to step load disturbance and parameter variations that ensure the robustness of the tilt integral derivative controller. Comparative analysis with previously published work indicates that the proposed tilt integral derivative controller gives better performance and holds the property of robustness. Simulations have been performed using Matlab®.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1581
Author(s):  
Deepak Kumar Gupta ◽  
Amitkumar V. Jha ◽  
Bhargav Appasani ◽  
Avireni Srinivasulu ◽  
Nicu Bizon ◽  
...  

The automatic load frequency control for multi-area power systems has been a challenging task for power system engineers. The complexity of this task further increases with the incorporation of multiple sources of power generation. For multi-source power system, this paper presents a new heuristic-based hybrid optimization technique to achieve the objective of automatic load frequency control. In particular, the proposed optimization technique regulates the frequency deviation and the tie-line power in multi-source power system. The proposed optimization technique uses the main features of three different optimization techniques, namely, the Firefly Algorithm (FA), the Particle Swarm Optimization (PSO), and the Gravitational Search Algorithm (GSA). The proposed algorithm was used to tune the parameters of a Proportional Integral Derivative (PID) controller to achieve the automatic load frequency control of the multi-source power system. The integral time absolute error was used as the objective function. Moreover, the controller was also tuned to ensure that the tie-line power and the frequency of the multi-source power system were within the acceptable limits. A two-area power system was designed using MATLAB-Simulink tool, consisting of three types of power sources, viz., thermal power plant, hydro power plant, and gas-turbine power plant. The overall efficacy of the proposed algorithm was tested for two different case studies. In the first case study, both the areas were subjected to a load increment of 0.01 p.u. In the second case, the two areas were subjected to different load increments of 0.03 p.u and 0.02 p.u, respectively. Furthermore, the settling time and the peak overshoot were considered to measure the effect on the frequency deviation and on the tie-line response. For the first case study, the settling times for the frequency deviation in area-1, the frequency deviation in area-2, and the tie-line power flow were 8.5 s, 5.5 s, and 3.0 s, respectively. In comparison, these values were 8.7 s, 6.1 s, and 5.5 s, using PSO; 8.7 s, 7.2 s, and 6.5 s, using FA; and 9.0 s, 8.0 s, and 11.0 s using GSA. Similarly, for case study II, these values were: 5.5 s, 5.6 s, and 5.1 s, using the proposed algorithm; 6.2 s, 6.3 s, and 5.3 s, using PSO; 7.0 s, 6.5 s, and 10.0 s, using FA; and 8.5 s, 7.5 s, and 12.0 s, using GSA. Thus, the proposed algorithm performed better than the other techniques.


Sign in / Sign up

Export Citation Format

Share Document