Control and synchronization for two Chua systems based on intuitionistic fuzzy control scheme: A comparative study

Author(s):  
Mohamed Hamdy ◽  
Mohamed Magdy ◽  
Salah Helmy

This paper presents control and synchronization for two nonlinear chaotic systems in the presence of uncertainties and external disturbances based on an intuitionistic fuzzy control (IFC) scheme. Two classes of Chua and cubic Chua oscillators have been formulated as master and slave respectively. The master and slave systems have different initial conditions and parameters, which leads to the butterfly effect that rules the chaotic systems’ behaviour. IFC scheme is chosen as a different method that has not been used before to control and synchronize Chua and cubic Chua oscillators. The main objective of the IFC scheme is to collect more information about the system and provide flexibility for the controller that increases the robustness of the control system to uncertainties in the structure of the chaotic systems. The stability analysis of the overall system is guaranteed using Routh-Hurwitz and Lyapunov criteria. The simulation results accomplished to evaluate the effectiveness of the proposed control and to demonstrate its reliability to control Chua’s circuit system with a comparative study.

2012 ◽  
Vol 488-489 ◽  
pp. 1793-1797
Author(s):  
R. Ghasemi ◽  
M.B. Menhaj ◽  
B. Abdi

This paper proposes a new method for designing a fuzzy adaptive controller for a class of non-affine nonlinear chaotic systems in which functions of the systems are unknown. The proposed method is aimed on a class of non-canonical non-affine nonlinear chaotic systems. The stability of the closed loop system is guaranteed based on Lyapunov’s theory. The proposed controller is robust against uncertainties and external disturbances. The simulation results show the effectiveness of the proposed method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Runzi Luo ◽  
Meichun Huang ◽  
Haipeng Su

This paper investigates the control and synchronization of a class of 3-D uncertain fractional-order chaotic systems with external disturbances. The adding one power integrator control scheme, which is the generalization of the traditional backstepping method, is used to investigate the global stability of the control and synchronization manifold. As a result, several criteria for chaos control and synchronization are obtained. Compared with the previous results, the presented strategies can not only be applied to a class of strict-feedback systems but also be applied to more general class of fractional-order chaotic systems. In addition, the proposed controllers are robust against uncertain parameters and external disturbances. To validate the effectiveness of the proposed criteria, two illustrative examples are given.


2014 ◽  
Vol 631-632 ◽  
pp. 710-713 ◽  
Author(s):  
Xian Yong Wu ◽  
Hao Wu ◽  
Hao Gong

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haipeng Su ◽  
Runzi Luo ◽  
Ling Xu ◽  
Meichun Huang ◽  
Jiaojiao Fu

This paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A new method which is referred as the analytical solution approach is firstly proposed for constructing Lyapunov function. Then, for suppressing the trajectories of the 3D chaotic system to its equilibrium point 00,0,0, a novel fast convergence controller containing parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new chaotic system to illustrate the effectiveness of the theoretical results.


2013 ◽  
Vol 397-400 ◽  
pp. 1606-1610 ◽  
Author(s):  
Li Dong Wang ◽  
Ying Zhao ◽  
Ni Zhang

In INS/GPS system, the changing of initial conditions and the quality of the data can affect the convergence of the conventional Kalman filter algorithm. Sage-Husa adaptive filter algorithm is adopted in the INS/GPS system in this paper. The effecting of the forgetting factor to the improved Sage-Husa adaptive filter algorithm is studied and the simulation results show that when the forgetting factor taken near 0.97, the adaptive filtering result is best, the stability of the system is guaranteed and the convergent speed of error can be reduced.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Salahuddin Abdul Rahman ◽  
Mohamed Zribi ◽  
Nejib Smaoui

The synchronous reluctance motor (SynRM) drive system is known to exhibit chaotic behavior under specified conditions. In this paper, the discrete-time sliding mode control (DSMC) technique is used to synchronize two SynRMs starting from different sets of initial conditions. The mixed variable speed reaching law is adopted in the design of the controller scheme. The parameters of the designed control scheme are tuned using a genetic algorithm (GA). Simulation results are presented to demonstrate the effectiveness of the proposed controller. In addition, the performance of the proposed control scheme is studied through simulations when bounded disturbances and mismatches between the parameters of the systems and those of the control scheme exist. The simulation results show that the designed control scheme is robust to bounded external disturbances and to mismatches in the parameters of the systems.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Changjin Xu ◽  
Peiluan Li ◽  
Maoxin Liao ◽  
Zixin Liu ◽  
Qimei Xiao ◽  
...  

In this paper, based on the earlier research, a new fractional-order chaotic Genesio-Tesi model is established. The chaotic phenomenon of the fractional-order chaotic Genesio-Tesi model is controlled by designing two suitable time-delayed feedback controllers. With the aid of Laplace transform, we obtain the characteristic equation of the controlled chaotic Genesio-Tesi model. Then by regarding the time delay as the bifurcation parameter and analyzing the characteristic equation, some new sufficient criteria to guarantee the stability and the existence of Hopf bifurcation for the controlled fractional-order chaotic Genesio-Tesi model are derived. The research shows that when time delay remains in some interval, the equilibrium point of the controlled chaotic Genesio-Tesi model is stable and a Hopf bifurcation will happen when the time delay crosses a critical value. The effect of the time delay on the stability and the existence of Hopf bifurcation for the controlled fractional-order chaotic Genesio-Tesi model is shown. At last, computer simulations check the rationalization of the obtained theoretical prediction. The derived key results in this paper play an important role in controlling the chaotic behavior of many other differential chaotic systems.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Runzi Luo ◽  
Haipeng Su

This paper investigates the stabilization and synchronization of a class of fractional-order chaotic systems which are affected by external disturbances. The chaotic systems are assumed that only a single output can be used to design the controller. In order to design the proper controller, some observer systems are proposed. By using the observer systems some sufficient conditions for achieving chaos control and synchronization of fractional-order chaotic systems are derived. Numerical examples are presented by taking the fractional-order generalized Lorenz chaotic system as an example to show the feasibility and validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document