Finite-time asynchronous control of discrete-time switched linear systems with event-triggered H∞ filtering

Author(s):  
Ziyi He ◽  
Baowei Wu ◽  
Yue-E Wang ◽  
Mingfei He

In this paper, the event-triggered H∞ filtering problem for discrete-time linear switched systems is investigated under asynchronous switching. Under the mode-dependent event-triggered transmission mechanism (METM), the switching signal and filtering signal are combined into an augmented switching signal by merging signal technology, and the switched system and filtering system are modeled as a filtering error system (FES). Because the switching signal of the filtering system is determined by METM, there will be an asynchronous switching phenomenon between the switched system and filtering system. The novel sufficient conditions are given to ensure that the FES is finite-time bounded (FTB) and has a specified H∞ performance by the average dwell time (ADT) and multi-Lyapunov functional method. And based on this, the design method of the H∞ filter is given. Ultimately, the numerical examples are inspired to manifest the availability of the effects in the study.

Author(s):  
Yilin Shang ◽  
Leipo Liu ◽  
Yifan Di ◽  
Zhumu Fu ◽  
Bo Fan

This paper considers the problem of guaranteed cost and finite-time event-triggered control of fractional-order switched systems. Firstly, an event-triggered scheme including both the information of current state and an exponential decay function is proposed, and a novel cost function that adopts the characteristics of fractional-order integration is presented. Secondly, some sufficient conditions are derived to guarantee that the corresponding closed-loop system is finite-time stable with a certain cost upper bound, using multiple Lyapunov functions and average dwell time approach. Meanwhile, the event-triggered parameters and state feedback gains are simultaneously obtained via solving linear matrix inequalities. Moreover, Zeno behavior does not exist by finding a positive lower bound of the triggered interval. Finally, an example about fractional-order switched electrical circuit is provided to show the effectiveness of the proposed method.


2019 ◽  
Vol 17 (1) ◽  
pp. 716-727
Author(s):  
Leipo Liu ◽  
Hao Xing ◽  
Xiangyang Cao ◽  
Xiushan Cai ◽  
Zhumu Fu

Abstract This paper considers the nonfragile observer-based guaranteed cost finite-time control of discrete-time positive impulsive switched systems(DPISS). Firstly, the positive observer and nonfragile positive observer are designed to estimate the actual state of the underlying systems, respectively. Secondly, by using the average dwell time(ADT) approach and multiple linear co-positive Lyapunov function (MLCLF), two guaranteed cost finite-time controller are designed and sufficient conditions are obtained to guarantee the corresponding closed-loop systems are guaranteed cost finite-time stability(GCFTS). Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.


2019 ◽  
Vol 41 (12) ◽  
pp. 3364-3371 ◽  
Author(s):  
Jinxia Liang ◽  
Baowei Wu ◽  
Lili Liu ◽  
Yue-E Wang ◽  
Changtao Li

Finite-time stability and finite-time boundedness of fractional order switched systems with [Formula: see text] are investigated in this paper. First of all, by employing the average dwell time technique and Lyapunov functional method, some sufficient conditions for finite-time stability and finite-time boundedness of fractional order switched systems are proposed. Furthermore, the state feedback controllers are constructed, and sufficient conditions are given to ensure that the corresponding closed-loop systems are finite-time stable and finite-time bounded. These conditions can be easily obtained in terms of linear matrix inequalities. Finally, two numerical examples are given to show the effectiveness of the results.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoqi Ma ◽  
Linlin Qin ◽  
Xinghua Liu ◽  
Gang Wu

This paper is concerned with the problem of observed-based event-triggered control for switched linear systems with time-varying delay and exogenous disturbance. First by employing a state observer, an observer-based event-triggered controller is designed to guarantee the finite-time boundedness and finite-time stabilization of the resulting dynamic augmented closed-loop system. Then based on the Lyapunov-like function method and the average dwell time technique, some sufficient conditions are given to ensure the finite-time boundedness and finite-time stabilization, respectively. Furthermore, the lower bound of the minimum interevent interval is proved to be positive, which thus excludes the Zeno behavior of sampling. A numerical example is finally exploited to verify the effectiveness and potential of the achieved control scheme.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Leipo Liu ◽  
Hao Xing ◽  
Xiangyang Cao ◽  
Zhumu Fu ◽  
Shuzhong Song

This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF) and average dwell time (ADT) approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB). Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Ronghao Wang ◽  
Jianchun Xing ◽  
Ping Wang ◽  
Qiliang Yang ◽  
Zhengrong Xiang

This paper is concerned with the problem of controller design for switched systems under asynchronous switching with exogenous disturbances. The attention is focused on designing the feedback controller that guarantees the finite-time bounded andL∞finite-time stability of the dynamic system. Firstly, when there exists asynchronous switching between the controller and the system, a sufficient condition for the existence of stabilizing switching law for the addressed switched system is derived. It is proved that the switched system is finite-time stabilizable under asynchronous switching satisfying the average dwell-time condition. Furthermore, the problem ofL∞control for switched systems under asynchronous switching is also investigated. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Honglei Xu ◽  
Xiang Xie ◽  
Lilian Shi

We study theL2-gain analysis problem for a class of discrete-time switched systems with time-varying delays. A mode-dependent average dwell time (MDADT) approach is applied to analyze theL2-gain performance for these discrete-time switched delay systems. Combining a multiple Lyapunov functional method with the MDADT approach, sufficient conditions expressed in form of a set of feasible linear matrix inequalities (LMIs) are established to guarantee theL2-gain performance. Finally, a numerical example will be provided to demonstrate the validity and usefulness of the obtained results.


2021 ◽  
Vol 20 ◽  
pp. 244-251
Author(s):  
Xinyue Tang ◽  
Yali Dong ◽  
Meng Liu

This paper deals with the problems of finite-time stochastic stability and stabilization for discrete-time stochastic systems with parametric uncertainties and time-varying delay. Using the Lyapunov-Krasovskii functional method, some sufficient conditions of finite-time stochastic stability for a class of discrete-time stochastic uncertain systems are established in term of matrix inequalities. Then, a new criterion is proposed to ensure the closed-loop system is finite-time stochastically stable. The controller gain is designed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed results.


2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Rajarathinam Vadivel ◽  
M. Syed Ali ◽  
Faris Alzahrani ◽  
Jinde Cao ◽  
Young Hoon Joo

This paper addresses the problem of synchronization for decentralized event-triggered uncertain switched neural networks with two additive time-varying delays. A decentralized eventtriggered scheme is employed to determine the time instants of communication from the sensors to the central controller based on narrow possible information only. In addition, a class of switched neural networks is analyzed based on the Lyapunov–Krasovskii functional method and a combined linear matrix inequality (LMI) technique and average dwell time approach. Some sufficient conditions are derived to guarantee the exponential stability of neural networks under consideration in the presence of admissible parametric uncertainties. Numerical examples are provided to illustrate the effectiveness of the obtained results. 


2018 ◽  
Vol 40 (16) ◽  
pp. 4330-4344 ◽  
Author(s):  
Haoyu Cheng ◽  
Wenxing Fu ◽  
Chaoyang Dong ◽  
Qing Wang ◽  
Yanze Hou

This paper investigates the problem of asynchronously finite-time H∞ control for morphing aircraft with controller uncertainties. Based on the switched linear parameter-varying model of morphing aircraft, the inherent packet dropouts of system are taken into consideration, which will lead to asynchronous switching. The asynchronous switching means that the switching of controllers will lag behind the switching of corresponding subsystem. Moreover, in order to overcome the undesirable influence of controller uncertainties and guarantee that the corresponding closed-loop system is finite-time bounded with a specified H∞ performance index, the non-fragile finite-time H∞ controller is developed via asynchronously switched control. For the purpose of less conservative controller design, the finite-time robust stability analysis of the system is verified by combining mode-dependent average dwell time method and multiple Lyapunov functional method. The sufficient existing conditions and solutions of the controllers are found by solving a series of linear matrix inequalities. Finally, the method proposed in this paper is demonstrated by an illustrative numerical example.


Sign in / Sign up

Export Citation Format

Share Document