scholarly journals An MDADT-Based Approach forL2-Gain Analysis of Discrete-Time Switched Delay Systems

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Honglei Xu ◽  
Xiang Xie ◽  
Lilian Shi

We study theL2-gain analysis problem for a class of discrete-time switched systems with time-varying delays. A mode-dependent average dwell time (MDADT) approach is applied to analyze theL2-gain performance for these discrete-time switched delay systems. Combining a multiple Lyapunov functional method with the MDADT approach, sufficient conditions expressed in form of a set of feasible linear matrix inequalities (LMIs) are established to guarantee theL2-gain performance. Finally, a numerical example will be provided to demonstrate the validity and usefulness of the obtained results.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng-Fan Liu ◽  
Chen-Xiao Cai ◽  
Wen-Yong Duan

This paper is concerned with the problem of exponential stability andH∞model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF) approach, sufficient conditions for exponential stability withH∞performance of such systems are derived in terms of linear matrix inequalities (LMIs). For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and anH∞error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.


Author(s):  
Jinjie Huang ◽  
Xianzhi Hao ◽  
Xiaozhen Pan

This article studies the asynchronous H∞ filtering fault detection for discrete-time switched linear systems with mode-dependent average dwell time (MDADT). Firstly, a series of mode-dependent fault detection filters are designed, and augmented with original switched systems to construct a residual evaluation system. However, in practice, the switching of the filter often lags behind the corresponding subsystem. To deal with this, the running time of the subsystem is divided into two parts: the matched and the mismatched. Then the asynchronous switched residual evaluation system is obtained, and global uniform exponential stability (GUES) and exponential H∞ performance of asynchronous switched system are guaranteed by using μ-dependent discontinuous multi-Lyapunov functions and MDADT method. The sufficient conditions for the existence of designed filter are given in terms of linear matrix inequalities (LMIs), and parameter matrices of the designed filter and MDADT can be obtained by solving these LMIs. Finally, the effectiveness of the proposed method is demonstrated by two examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Li-li Li ◽  
Guangling Zhang ◽  
Xin Ge ◽  
Cui-li Jin

This paper is concerned with the problem of weightedH∞filtering for a class of switched linear systems with two additive time-varying delays, which represent a general class of switched time-delay systems with strong practical background. Combining average dwell time (ADT) technique with piecewise Lyapunov functionals, sufficient conditions are established to guarantee the exponential stability and weightedH∞performance for the filtering error systems. The parameters of the designed switched filters are obtained by solving linear matrix inequalities (LMIs). A modification of Jensen integral inequality is exploited to derive results with less theoretical conservatism and computational complexity. Finally, two examples are given to demonstrate the effectiveness of the proposed method.


2018 ◽  
Vol 41 (1) ◽  
pp. 14-22 ◽  
Author(s):  
NA Baleghi ◽  
MH Shafiei

This paper studies the stabilization problem of discrete-time switched systems in the presence of a time-varying delay and parametric uncertainties. The main goal is to provide a state feedback controller to guarantee the stability of the closed-loop system with an evaluated average dwell time. In this regard, an appropriate Lyapunov–Krasovskii functional is constructed and the sufficient conditions for stability of the closed-loop system are developed in terms of feasibility testing of proposed linear matrix inequalities. These conditions only depend on the upper bounds of the time delay and uncertain parameters. Additionally, a numerical example is provided to verify the theoretical results.


2019 ◽  
Vol 41 (12) ◽  
pp. 3364-3371 ◽  
Author(s):  
Jinxia Liang ◽  
Baowei Wu ◽  
Lili Liu ◽  
Yue-E Wang ◽  
Changtao Li

Finite-time stability and finite-time boundedness of fractional order switched systems with [Formula: see text] are investigated in this paper. First of all, by employing the average dwell time technique and Lyapunov functional method, some sufficient conditions for finite-time stability and finite-time boundedness of fractional order switched systems are proposed. Furthermore, the state feedback controllers are constructed, and sufficient conditions are given to ensure that the corresponding closed-loop systems are finite-time stable and finite-time bounded. These conditions can be easily obtained in terms of linear matrix inequalities. Finally, two numerical examples are given to show the effectiveness of the results.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Chuangxia Huang ◽  
Jie Cao ◽  
Peng Wang

We address the problem of stochastic attractor and boundedness of a class of switched Cohen-Grossberg neural networks (CGNN) with discrete and infinitely distributed delays. With the help of stochastic analysis technology, the Lyapunov-Krasovskii functional method, linear matrix inequalities technique (LMI), and the average dwell time approach (ADT), some novel sufficient conditions regarding the issues of mean-square uniformly ultimate boundedness, the existence of a stochastic attractor, and the mean-square exponential stability for the switched Cohen-Grossberg neural networks are established. Finally, illustrative examples and their simulations are provided to illustrate the effectiveness of the proposed results.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Shujie ◽  
Shi Bao ◽  
Zhang Qiang ◽  
Pan Tetie

This paper investigates the problem of robust exponential stabilization for uncertain impulsive bilinear time-delay systems with saturating actuators. By using the Lyapunov function and Razumikhin-type techniques, two classes of impulsive systems are considered: the systems with unstable discrete-time dynamics and the ones with stable discrete-time dynamics. Sufficient conditions for robust stabilization are obtained in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the theoretical results.


2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.


2017 ◽  
Vol 40 (9) ◽  
pp. 2756-2764 ◽  
Author(s):  
Qilong Ai ◽  
Chengcheng Ren ◽  
Jun Dong ◽  
Shuping He

This paper is concerned with the problem of finite-time H∞ resilient filtering for a class of switch systems. The filtering error dynamics is constructed based on the H∞ resilient filter. The objective is to design a filter such that the finite-time H∞ gain from the unknown input to an estimation error is minimized or guaranteed to be less than or equal to a prescribed value. By selecting the proper multiple Lyapunov function and using the average dwell-time approach, sufficient conditions are obtained for the existence of the desired H∞ resilient filter, which also guarantee the finite-time boundedness of the filtering error dynamic systems. The design criteria are proposed in the form of linear matrix inequalities and then described as an optimization algorithm. Finally, a numerical example is employed to illustrate the effectiveness of the developed techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Wang ◽  
Haijun Hu ◽  
Zheng Jun ◽  
Yanxiang Tan ◽  
Li Liu

This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications.


Sign in / Sign up

Export Citation Format

Share Document