scholarly journals Dynamic response characteristics of water and methane during isobaric imbibition process in remolded coal containing methane

2018 ◽  
Vol 37 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Jiwei Yue ◽  
Zhaofeng Wang ◽  
Jinsheng Chen

Addition of water to the coal is actually an isobaric imbibition process. To study the dynamic response characteristics of water and methane, the isobaric imbibition process was stimulated by a self-designed experimental device which can eliminate the reabsorbing phenomenon. The results indicate that adding water can displace absorbed gas. The displacement mechanism is attributed to the capillary effect and competitive adsorption during isobaric imbibition process. A competitive adsorption phenomenon exists between gas molecules and water molecules. Since oxygen-containing functional groups in coal and the hydrogen bond of water, water can easily occupy high-energy sites and only the low-energy sites are available for methane. The imbibition quantity increases with increasing water content or adsorption equilibrium pressure. Moreover, the imbibition quantity would reach a maximum value. The relationship between water content and maximum imbibition quantity or the maximum imbibition rate can be described by a Langmuir function under the same adsorption equilibrium pressure. The maximum imbibition quantity increases with increasing adsorption equilibrium pressure under the same water content, which also can be described by a Langmuir function. However, the maximum imbibition rate decreases with increasing adsorption equilibrium pressures under the same water content, which can be described by an exponential function. Compared to the adsorption equilibrium pressure, the water content has a greater effect on the imbibition quantity and imbibition rate. This study revealed the mechanisms of the dynamic response characteristics of water and methane during isobaric imbibition process based on the transformation form of Hagen–Poiseuille equation, adsorption force of coal and gas and adsorption force of coal and water, which can provide a new method to control gas in deep coal seams.

1984 ◽  
Vol 16 (1-2) ◽  
pp. 119-122
Author(s):  
Y. Morit ◽  
K. Segi ◽  
M. Samejima ◽  
T. Nakamura

1995 ◽  
Vol 6 (5) ◽  
pp. 465-472 ◽  
Author(s):  
C. E. M. Sefton ◽  
P. G. Whitehead ◽  
A. Eatherall ◽  
I. G. Littlewood ◽  
A. J. Jakeman

2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


Sign in / Sign up

Export Citation Format

Share Document