scholarly journals Povidone-Iodine Use in Sinonasal and Oral Cavities: A Review of Safety in the COVID-19 Era

2020 ◽  
Vol 99 (9) ◽  
pp. 586-593 ◽  
Author(s):  
Samantha Frank ◽  
Joseph Capriotti ◽  
Seth M. Brown ◽  
Belachew Tessema

Objectives: Approaches to nasal and oral decontamination with povidone-iodine (PVP-I) have been published to reduce nosocomial spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). The safety of PVP-I topically applied to the nasal and oral cavity is addressed by a literature review. The specific efficacy of PVP-I against coronaviruses and its potential efficacy against SARS-CoV-2 is discussed. Methods: A review was performed utilizing PubMed and Cochrane Databases. All citations in protocols for nasal and oral PVP-I use regarding COVID-19 were independently reviewed. Results: Povidone-iodine has been safely administered for up to 5 months in the nasal cavity and 6 months in the oral cavity. Concentrations less than 2.5% in vitro do not reduce ciliary beat frequency or cause pathological changes in ciliated nasal epithelium, upper respiratory, or mucosal cells. Adverse events with oral use have not been reported in conscious adults or children. Allergy and contact sensitivity is rare. Chronic mucosal use up to 5% has not been shown to result in clinical thyroid disease. PVP-I is rapidly virucidal and inactivates coronaviruses, including SARS-CoV and Middle East Respiratory Syndrome (MERS). Conclusions: Povidone-iodine can safely be used in the nose at concentrations up to 1.25% and in the mouth at concentrations up to 2.5% for up to 5 months. Povidone-iodine rapidly inactivates coronaviruses, including SARS and MERS, when applied for as little as 15 seconds. There is optimism that PVP-I can inactivate SARS-CoV-2, but in vitro efficacy has not yet been demonstrated.

1998 ◽  
Vol 118 (4) ◽  
pp. 472-477 ◽  
Author(s):  
Carlos B. Cyrus ◽  
Bin Yang ◽  
Thomas V. McCaffrey

It has been suggested that leukotrienes C4 (LTC4) and D4 (LTD4) released from upper respiratory mucosa influence mucociliary transport during allergic reactions. We studied the in vitro effects of leukotrienes C4 and D4 on the ciliary beat frequency (CBF) of human adenoid explants over a 5-hour period. Tissue explants were cultured at 35° C in Minimum Essential Medium Eagle (MEM). The CBF was measured using phase contrast microscopy and microphotometry. Measurements of CBF were recorded in medium alone and in medium containing LTC4 or LTD4 at concentrations of 10−8 and 10−6 M. LTC4 and LTD4 increased CBF at concentrations of 10−8 and 10−6 M with increases of 20.51% ± 2.69% and 29.84% ± 4.06%, respectively. To determine the specificity of the LTC4 and LTD4 effects, the ciliated epithelium was treated with the specific leukotriene receptor antagonist LY-171,883 before administration of LTC4 and LTD4. LY-171,883 (10−6 M) significantly inhibited the ciliostimulatory effects of both leukotrienes. Our findings indicate that LTC4 and LTD4 increase CBF in vitro by activation of the LTD4 receptor.


1994 ◽  
Vol 251 (6) ◽  
pp. 325-328 ◽  
Author(s):  
P. J. Schuil ◽  
J. M. E. van Gelder ◽  
M. ten Berge ◽  
K. Graamans ◽  
E. H. Huizing

1995 ◽  
Vol 104 (10) ◽  
pp. 798-802 ◽  
Author(s):  
Paul J. Schuil ◽  
Maartje Ten Berge ◽  
Kees Graamans ◽  
José M. E. Van Gelder ◽  
Egbert H. Huizing

On stimulation of trigeminal nerve endings, neuropeptides are released into the nasal mucosa. Among these neuropeptides is substance P (SP). In this study, we determined the effect in vitro of SP, as well as SP together with thiorphan, a blocker of the SP-degrading enzyme neutral endopeptidase, on the ciliary beat frequency (CBF) of the human upper respiratory tract. Ciliated epithelium of human adenoid tissue was used in the experiments. The CBF was measured by means of a computer-assisted photoelectric method. Substance P (10−8 to 10−5 mol/L, n = 7) showed a small but statistically significant dose-dependent decrease in CBF. On perfusion with SP (10−8 to 10−5 mol/L, n = 8) in combination with thiorphan, no statistically significant effect was found. We conclude that SP does not have a direct effect on ciliary activity to such an extent that it will affect mucociliary transport in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


1995 ◽  
Vol 115 (3) ◽  
pp. 438-442 ◽  
Author(s):  
P. J. Schuil ◽  
M. Ten Berge ◽  
J. M. E. Van Gelder ◽  
K. Graamans ◽  
E. H. Huizing

1995 ◽  
Vol 20 (5) ◽  
pp. 465-469 ◽  
Author(s):  
A. M. AGIUS ◽  
M. WAKE ◽  
A. L. PAHOR ◽  
A. SMALLMAN

1988 ◽  
Vol 65 (4) ◽  
pp. 1617-1620 ◽  
Author(s):  
D. R. Maurer ◽  
J. Liebman

Consumption of ethanol can impair lung function and slow total lung clearance. High concentrations of ethanol have been shown to slow or arrest ciliary beating. This study examined the effects of concentrations of alcohol comparable to blood levels achieved from social drinking on ciliary beat frequency. We obtained ciliated cells by brushing the trachea of unanesthetized sheep during fiber-optic bronchoscopy. The cells were suspended in a perfusion chamber and physiological conditions were maintained in vitro. Ciliary beat frequency and synchrony were determined by slow-motion analysis of video images obtained by interference contrast microscopy. Metachronal ciliary coordination was observed in all preparations. The ciliary beat frequency was stimulated at ethanol concentrations from 0.01 up to but not including 0.1%, unchanged at 0.5 and 1%, and slowed at 2%. While confirming inhibition of ciliary motility at very high ethanol levels, we observed no acute impairment of ciliary function at ethanol concentrations comparable to those achieved from social drinking. Indeed, we found an unexpected stimulation of ciliary beating at low levels of ethanol. How this alteration in ciliary beating would affect pulmonary clearance remains unknown at this time.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Miguel Camara Pirez ◽  
Heather Steele ◽  
Sven Reese ◽  
Sabine Kölle

Abstract To date sperm-oviduct interactions have largely been investigated under in vitro conditions. Therefore we set out to characterize the behaviour of bovine spermatozoa within the sperm reservoir under near in vivo conditions and in real-time using a novel live cell imaging technology and a newly established fluorescent sperm binding assay. Sperm structure and tubal reactions after sperm binding were analysed using scanning and transmission electron microscopy and histochemistry. As a model to specify the impact of stress on sperm-oviduct interactions, frozen-thawed conventional and sex-sorted spermatozoa from the same bulls (n = 7) were co-incubated with oviducts obtained from cows immediately after slaughter. Our studies revealed that within the oviductal sperm reservoir agile (bound at a tangential angle of about 30°, actively beating undulating tail), lagging (bound at a lower angle, reduced tail movement), immotile (absence of tail movement) and hyperactivated (whip-like movement of tail) spermatozoa occur, the prevalence of which changes in a time-dependent pattern. After formation of the sperm reservoir, tubal ciliary beat frequency is significantly increased (p = 0.022) and the epithelial cells show increased activity of endoplasmic reticula. After sex sorting, spermatozoa occasionally display abnormal movement patterns characterized by a 360° rotating head and tail. Sperm binding in the oviduct is significantly reduced (p = 0.008) following sexing. Sex-sorted spermatozoa reveal deformations in the head, sharp bends in the tail and a significantly increased prevalence of damaged mitochondria (p < 0.001). Our results imply that the oviductal cells specifically react to the binding of spermatozoa, maintaining sperm survival within the tubal reservoir. The sex-sorting process, which is associated with mechanical, chemical and time stress, impacts sperm binding to the oviduct and mitochondrial integrity affecting sperm motility and function.


1988 ◽  
Vol 65 (4) ◽  
pp. 1895-1901 ◽  
Author(s):  
L. B. Wong ◽  
I. F. Miller ◽  
D. B. Yeates

The ciliated epithelium of the mammalian trachea separates the neurohumoral milieu of the tissue from that of the environment of the airway lumen. To determine whether specific autonomic receptors regulating ciliary beat frequency (CBF) were located on mucosal or serosal sides, we measured CBF by heterodyne mode correlation analysis laser light scattering in bovine tracheal tissues mounted in a two-sided chamber. A beta 2-adrenergic agonist, fenoterol, at 10(-7) M, stimulated serosal CBF from 7.9 +/- 1.3 to 20.2 +/- 5.8 Hz (P less than 0.01) and mucosal CBF from 6.6 +/- 0.9 to 14.7 +/- 4.6 Hz (P less than 0.01). A muscarinic cholinergic agonist, methacholine, at 10(-7) M, increased mucosal CBF from 8.4 +/- 1.0 to 19.5 +/- 5.5 Hz (P less than 0.01) and serosal CBF from 8.0 +/- 0.9 to 15.4 +/- 5.0 Hz (P less than 0.01). The differences in stimulation of CBF on the mucosal and serosal sides between fenoterol and methacholine were significant (P less than 0.01). Studies in which these autonomic agonist stimulating effects were inhibited by their respective antagonists, propranolol and atropine sulfate, demonstrated that CBF can be regulated independently by mediators both in the submucosa and within the mucus lining.


Sign in / Sign up

Export Citation Format

Share Document