Weakly Inhomogeneous Media Tomography

2003 ◽  
Vol 25 (2) ◽  
pp. 122-133 ◽  
Author(s):  
Robert Ferrière ◽  
Serge Mensah ◽  
Jean-Pierre Lefebvre

Our objective is to develop an ultrasonic scanner for breast imaging. High resolution is obtained by using wide-band spherical waves transmitted and measured in the near field zone (i.e., close to the skin) all around the organ. The tomographic approach that we adopt allows us to use low central frequency waves (3–7 MHz) that are suitable for good penetration while maintaining high resolution and contrast. The procedure is thus suitable for early detection of tumors and increases the chances of total recovery. The novelty of the present reconstruction procedure is that it associates the signals acquired in transmission to the data measured in reflection over a large aperture. This enables us to correct the phase aberration induced by weak inhomogeneities whose sizes might be several wavelengths. Numerical tests based on Finite Difference Time Domain (FDTD) simulations demonstrate the greater fidelity of the reconstruction.

2020 ◽  
Vol 47 (10) ◽  
pp. 5147-5157
Author(s):  
Sergey Shipilov ◽  
Aleksandr Eremeev ◽  
Vladimir Yakubov ◽  
Ivan Fedyanin ◽  
Rail Satarov ◽  
...  

1996 ◽  
Author(s):  
Klony S. Lieberman ◽  
Hanan Terkel ◽  
Michael Rudman ◽  
A. Ignatov ◽  
Aaron Lewis

Author(s):  
Jiang Li ◽  
Zhu Wang ◽  
Yue Ma ◽  
Xuehong Ran ◽  
Honggang Hao
Keyword(s):  

2021 ◽  
Vol 35 (3) ◽  
pp. 406-414
Author(s):  
Yoko Satoh ◽  
Masami Kawamoto ◽  
Kazunori Kubota ◽  
Koji Murakami ◽  
Makoto Hosono ◽  
...  

AbstractBreast positron emission tomography (PET) has had insurance coverage when performed with conventional whole-body PET in Japan since 2013. Together with whole-body PET, accurate examination of breast cancer and diagnosis of metastatic disease are possible, and are expected to contribute significantly to its treatment planning. To facilitate a safer, smoother, and more appropriate examination, the Japanese Society of Nuclear Medicine published the first edition of practice guidelines for high-resolution breast PET in 2013. Subsequently, new types of breast PET have been developed and their clinical usefulness clarified. Therefore, the guidelines for breast PET were revised in 2019. This article updates readers as to what is new in the second edition. This edition supports two different types of breast PET depending on the placement of the detector: the opposite-type (positron emission mammography; PEM) and the ring-shaped type (dedicated breast PET; dbPET), providing an overview of these scanners and appropriate imaging methods, their clinical applications, and future prospects. The name “dedicated breast PET” from the first edition is widely used to refer to ring-shaped type breast PET. In this edition, “breast PET” has been defined as a term that refers to both opposite- and ring-shaped devices. Up-to-date breast PET practice guidelines would help provide useful information for evidence-based breast imaging.


2013 ◽  
Vol 13 (02) ◽  
pp. 1340004
Author(s):  
APARNA NARENDRA BHALE ◽  
MANISH RATNAKAR JOSHI

Breast cancer is one of the major causes of death among women. If a cancer can be detected early, the options of treatment and the chances of total recovery will increase. From a woman's point of view, the procedure practiced (compression of breasts to record an image) to obtain a digital mammogram (DM) is exactly the same that is used to obtain a screen film mammogram (SFM). The quality of DM is undoubtedly better than SFM. However, obtaining DM is costlier and very few institutions can afford DM machines. According to the National Cancer Institute 92% of breast imaging centers in India do not have digital mammography machines and they depend on the conventional SFM. Hence in this context, one should answer "Can SFM be enhanced up to a level of DM?" In this paper, we discuss our experimental analysis in this regard. We applied elementary image enhancement techniques to obtain enhanced SFM. We performed the quality analysis of DM and enhanced SFM using standard metrics like PSNR and RMSE on more than 350 mammograms. We also used mean opinion score (MOS) analysis to evaluate enhanced SFMs. The results showed that the clarity of processed SFM is as good as DM. Furthermore, we analyzed the extent of radiation exposed during SFM and DM. We presented our literally findings and clinical observations.


Author(s):  
Anatoliy O. Boryssenko ◽  
Christophe Craeye ◽  
Daniel H. Schaubert

2000 ◽  
Vol 88 (5) ◽  
pp. 2541-2547 ◽  
Author(s):  
N. Richard ◽  
A. Dereux ◽  
E. Bourillot ◽  
T. David ◽  
J. P. Goudonnet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document