scholarly journals Characterization of Polybrominated Diphenyl Ether Toxicity in Wistar Han Rats and Use of Liver Microarray Data for Predicting Disease Susceptibilities

2012 ◽  
Vol 40 (1) ◽  
pp. 93-106 ◽  
Author(s):  
J. K. Dunnick ◽  
A. Brix ◽  
H. Cunny ◽  
M. Vallant ◽  
K. R. Shockley

The toxicity of polybrominated diphenyl ethers (PBDEs), flame-retardant components, was characterized in offspring from Wistar Han dams exposed by gavage to a PBDE mixture (DE71) starting at gestation day 6 and continuing to weaning on postnatal day (PND) 21. Offspring from the dams underwent PBDE direct dosing by gavage at the same dose as their dams from PND 12 to PND 21, and then after weaning for another thirteen weeks. Liver samples were collected at PND 22 and week 13 for liver gene expression analysis (Affymetrix Rat Genome 230 2.0 Array). Treatment with PBDE induced 1,066 liver gene transcript changes in females and 1,200 transcriptional changes in males at PND 22 (false discovery rate < 0.01), but only 263 liver transcriptional changes at thirteen weeks in male rats (false discovery rate < 0.05). No significant differences in dose response were found between male and female pups. Transcript changes at PND 22 coded for proteins in xenobiotic, sterol, and lipid metabolism, and cell cycle regulation, and overlapped rodent liver transcript patterns after a high-fat diet or phenobarbital exposure. These findings, along with the observed PBDE-induced liver hypertrophy and vacuolization, suggest that long-term PBDE exposure has the potential to modify cell functions that contribute to metabolic disease and/or cancer susceptibilities.

Endocrinology ◽  
2014 ◽  
Vol 155 (10) ◽  
pp. 4104-4112 ◽  
Author(s):  
Ruby Bansal ◽  
Daniel Tighe ◽  
Amin Danai ◽  
Dorothea F. K. Rawn ◽  
Dean W. Gaertner ◽  
...  

Abstract Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0–30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 829-833
Author(s):  
Chiara Sabatti ◽  
Susan Service ◽  
Nelson Freimer

Abstract We explore the implications of the false discovery rate (FDR) controlling procedure in disease gene mapping. With the aid of simulations, we show how, under models commonly used, the simple step-down procedure introduced by Benjamini and Hochberg controls the FDR for the dependent tests on which linkage and association genome screens are based. This adaptive multiple comparison procedure may offer an important tool for mapping susceptibility genes for complex diseases.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii71-iii71
Author(s):  
T Kaisman-Elbaz ◽  
Y Elbaz ◽  
V Merkin ◽  
L Dym ◽  
A Noy ◽  
...  

Abstract BACKGROUND Glioblastoma is known for its dismal prognosis though its dependency on patients’ readily available RBCs parameters defining the patient’s anemic status such as hemoglobin level and Red blood cells distribution Width (RDW) is not fully established. Several works demonstrated a connection between low hemoglobin level or high RDW values to overall glioblastoma patient’s survival, but in other works, a clear connection was not found. This study addresses this unclarity. MATERIAL AND METHODS In this work, 170 glioblastoma patients, diagnosed and treated in Soroka University Medical Center (SUMC) in the last 12 years were retrospectively inspected for their survival dependency on pre-operative RBCs parameters using multivariate analysis followed by false discovery rate procedure due to the multiple hypothesis testing. A survival stratification tree and Kaplan-Meier survival curves that indicate the patient’s prognosis according to these parameters were prepared. RESULTS Beside KPS>70 and tumor resection supplemented by oncological treatment, age<70 (HR=0.4, 95% CI 0.24–0.65), low hemoglobin level (HR=1.79, 95% CI 1.06–2.99) and RDW<14% (HR=0.57, 95% CI 0.37–0.88) were found to be prognostic to patients’ overall survival in multivariate analysis, accounting for false discovery rate of less than 5%. CONCLUSION A survival stratification highlighted a non-anemic subgroup of nearly 30% of the cohort’s patients whose median overall survival was 21.1 months (95% CI 16.2–27.2) - higher than the average Stupp protocol overall median survival of about 15 months. A discussion on the beneficial or detrimental effect of RBCs parameters on glioblastoma prognosis and its possible causes is given.


2020 ◽  
Vol 223 (1) ◽  
pp. 19-22
Author(s):  
Jingjing Zhu ◽  
Chong Wu ◽  
Lang Wu

Abstract It is critical to identify potential causal targets for SARS-CoV-2, which may guide drug repurposing options. We assessed the associations between genetically predicted protein levels and COVID-19 severity. Leveraging data from the COVID-19 Host Genetics Initiative comparing 6492 hospitalized COVID-19 patients and 1 012 809 controls, we identified 18 proteins with genetically predicted levels to be associated with COVID-19 severity at a false discovery rate of &lt;0.05, including 12 that showed an association even after Bonferroni correction. Of the 18 proteins, 6 showed positive associations and 12 showed inverse associations. In conclusion, we identified 18 candidate proteins for COVID-19 severity.


Diabetologia ◽  
2007 ◽  
Vol 50 (9) ◽  
pp. 1867-1879 ◽  
Author(s):  
A. A. Toye ◽  
M. E. Dumas ◽  
C. Blancher ◽  
A. R. Rothwell ◽  
J. F. Fearnside ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document