human fetal tissues
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 11)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christina Kyrousi ◽  
Adam C. O’Neill ◽  
Agnieska Brazovskaja ◽  
Zhisong He ◽  
Pavel Kielkowski ◽  
...  

AbstractBasal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs’ anchoring and migration within the human brain. We propose that its temporal expression influences NPCs’ delamination, corticogenesis and gyrification extrinsically.


Author(s):  
Max Beesley ◽  
Joseph Davidson ◽  
Francesco Panariello ◽  
Soichi Shibuya ◽  
Dominic Scaglioni ◽  
...  

Background: While pregnant women have been identified as a potentially at-risk group concerning COVID-19 infection, little is known regarding the susceptibility of the fetus to infection. Co-expression of ACE2 and TMPRSS2 has been identified as a pre-requisite for infection, and expression across different tissues is known to vary between children and adults. However, the expression of these proteins in the fetus is unknown. Methods: We performed a retrospective analysis of single cell data repositories. This data was then validated at both gene and protein level by performing qRT-PCR and two-colour immunohistochemistry on a library of second-trimester human fetal tissues. Findings: TMPRSS2 is present at both gene and protein level in the predominantly epithelial fetal tissues analysed. ACE2 is present at significant levels, only in the fetal intestine and kidney and is not expressed in the fetal lung. The placenta is also negative for the two proteins both during development and at term. Interpretation: This dataset indicates that the lungs are unlikely to be a viable route of SARS-CoV2 fetal infection. The fetal kidney, despite presenting both the proteins required for the infection, is anatomically protected from the exposure to the virus. However, the GI tract is likely to be susceptible to infection due to its high co-expression of both proteins, as well as its exposure to potentially infected amniotic fluid. Funding: This work was made possible by an MRC / UKRI COVID-19 Rapid response initiative grant (MR/V028480/1).


Author(s):  
Feng Xiong ◽  
Ruoyu Wang ◽  
Joo-Hyung Lee ◽  
Shenglan Li ◽  
Shin-Fu Chen ◽  
...  

AbstractThe molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional “roadblocks” to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1–host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Chase D. McCann ◽  
Christiaan H. van Dorp ◽  
Ali Danesh ◽  
Adam R. Ward ◽  
Thomas R. Dilling ◽  
...  

HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This “participant-derived xenograft” model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.


Author(s):  
Inger Kjaer ◽  
Inger Kjaer

Objectives: To compare results obtained since 1970 from craniofacial embryological studies on human fetal tissues with results from similar studies performed on animal tissues and focus on how the different tissue types and methods can enrich the human postnatal craniofacial research. There are three sections: i) research on normal and pathological human fetal material, ii) animal experimental research performed on different species, and iii) comparisons of the results obtained. Human Material: On human prenatal material, normal and pathological developmental processes in the mandible, maxilla, nasal cavity, body axis, cranial base, vomeronasal organs, pituitary gland and nervous system were related to postnatal findings. Specific focus was given to pre/postnatal bridging of observations on holoprosencephaly, cleft lip/palate, Down syndrome, myelomeningocele/spina bifida, Kallmann syndrome, Turner syndrome and Fragile X syndrome. Demarcations of pathological regions in Cri du chat, Velo-cardio-Facial syndrome and Crouzon syndrome were mapped. Animal Material: Animal experimental results from studies on the notochord, gastrulation, neural crest, hindbrain, rhombomere, homeobox genes and experimentally induced malformation were presented. Comparing materials: The educational background of the scientists performing human and animal research, their postnatal clinical experience, the research materials used and the methods available for research are compared. Furthermore, the obtained findings result in a “pro et contra list” indicating what is positive and what is negative for improving postnatal human diagnostics. Conclusion: Human and animal studies in craniofacial embryology enrich human postnatal craniofacial insight differently. Future cooperation between human and animal research cultures is recommended.


2020 ◽  
Vol 57 (6) ◽  
pp. 389-399 ◽  
Author(s):  
Hala Nasser ◽  
Liza Vera ◽  
Monique Elmaleh-Bergès ◽  
Katharina Steindl ◽  
Pascaline Letard ◽  
...  

BackgroundPrimary hereditary microcephaly (MCPH) comprises a large group of autosomal recessive disorders mainly affecting cortical development and resulting in a congenital impairment of brain growth. Despite the identification of >25 causal genes so far, it remains a challenge to distinguish between different MCPH forms at the clinical level.Methods7 patients with newly identified mutations in CDK5RAP2 (MCPH3) were investigated by performing prospective, extensive and systematic clinical, MRI, psychomotor, neurosensory and cognitive examinations under similar conditions.ResultsAll patients displayed neurosensory defects in addition to microcephaly. Small cochlea with incomplete partition type II was found in all cases and was associated with progressive deafness in 4 of them. Furthermore, the CDK5RAP2 protein was specifically identified in the developing cochlea from human fetal tissues. Microphthalmia was also present in all patients along with retinal pigmentation changes and lipofuscin deposits. Finally, hypothalamic anomalies consisting of interhypothalamic adhesions, a congenital midline defect usually associated with holoprosencephaly, was detected in 5 cases.ConclusionThis is the first report indicating that CDK5RAP2 not only governs brain size but also plays a role in ocular and cochlear development and is necessary for hypothalamic nuclear separation at the midline. Our data indicate that CDK5RAP2 should be considered as a potential gene associated with deafness and forme fruste of holoprosencephaly. These children should be given neurosensory follow-up to prevent additional comorbidities and allow them reaching their full educational potential.Trial registration numberNCT01565005.


2019 ◽  
Vol 10 ◽  
Author(s):  
Na Li ◽  
Vincent van Unen ◽  
Nannan Guo ◽  
Tamim Abdelaal ◽  
Antonios Somarakis ◽  
...  

2019 ◽  
Vol 5 (5) ◽  
pp. eaaw1271 ◽  
Author(s):  
Ewart Kuijk ◽  
Francis Blokzijl ◽  
Myrthe Jager ◽  
Nicolle Besselink ◽  
Sander Boymans ◽  
...  

A developing human fetus needs to balance rapid cellular expansion with maintaining genomic stability. Here, we accurately quantified and characterized somatic mutation accumulation in fetal tissues by analyzing individual stem cells from human fetal liver and intestine. Fetal mutation rates were about fivefold higher than in tissue-matched adult stem cells. The mutational landscape of fetal intestinal stem cells resembled that of adult intestinal stem cells, while the mutation spectrum of fetal liver stem cells is distinct from stem cells of the fetal intestine and the adult liver. Our analyses indicate that variation in mutational mechanisms, including oxidative stress and spontaneous deamination of methylated cytosines, contributes to the observed divergence in mutation accumulation patterns and drives genetic mosaicism in humans.


2019 ◽  
Vol 21 (5) ◽  
pp. 651-661 ◽  
Author(s):  
Shan Xiao ◽  
Shuo Cao ◽  
Qitao Huang ◽  
Linjian Xia ◽  
Mingqiang Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document