scholarly journals Analytical High-resolution Electron Microscopy Reveals Organ-specific Nanoceria Bioprocessing

2017 ◽  
Vol 46 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Uschi M. Graham ◽  
Robert A. Yokel ◽  
Alan K. Dozier ◽  
Lawrence Drummy ◽  
Krishnamurthy Mahalingam ◽  
...  

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.

1983 ◽  
Vol 31 ◽  
Author(s):  
K. J. Morrissey ◽  
Z. Elgat ◽  
Y. Kouh ◽  
C. B. Carter

ABSTRACTHigh resolution transmission electron microscopy (HRTEM) has been used to study structures found in secondphase particles in commercial alumina compacts. Analytical electron microscopy has been used to identify elements present in the particles. Computer image simulation has been used for both the structural interpretation of high resolution images and predicting the effect which the presence of other elements would have on the observed structures.


1999 ◽  
Vol 5 (5) ◽  
pp. 374-376
Author(s):  
William F. Tivol

This volume comprises four articles on widely divergent topics and of equally divergent practicality. The first article, by P.E. Champness, is on the application of transmission electron microscopy to mineralogy; analytical electron microscopy and high-resolution transmission electron microscopy are discussed. If you are a mineralogist who is interested in the kinds of results these techniques can provide, or if you are an expert in transmission electron microscopy who wants to drum up business from the geology department in your institution, you will find useful information here.


1990 ◽  
Vol 183 ◽  
Author(s):  
C. P. Burmester ◽  
S. Quong ◽  
L. T. Wille ◽  
R. Gronsky ◽  
B. T. Ahn ◽  
...  

AbstractHigh resolution electron microscopy is used to investigate the effect of electron irradiation induced oxygen loss on the states of partial order in YBa2Cu3Oz. Contrast effects visible in the [001] zone image as a result of the degree of the out-of-plane correlation of these ordered states are investigated. Using statistical simulations to aid in the analysis of the HREM images, an interpretation based on a kinetically limited evolution of the variation of long range [001] ordering is proposed.


1993 ◽  
Vol 8 (5) ◽  
pp. 1019-1027 ◽  
Author(s):  
F. Hakkens ◽  
A. De Veirman ◽  
W. Coene ◽  
Broeder F.J.A. den

The structure of Co/Pd and Co/Au (111) multilayers is studied using transmission electron microscopy and high resolution electron microscopy. We focused on microstructure, atomic stacking (especially at the interfaces), and coherency, as these are structural properties that have considerable magnetic effects. A columnar structure with a strong curvature of the multilayer influenced by substrate temperature during growth is observed. High resolution imaging shows numerous steps at the interfaces of the multilayer structure and the presence of misfit dislocations. In bright-field images, periodic contrast fringes are observed at these interfaces as the result of moiré interference. These moiré fringes are used to study the misfit relaxation at the interfaces, whereas electron diffraction gives the average relaxation over the whole layer. Both measurements determined that, for Co/Pd as well as Co/Au multilayers, 80–85% of the misfit is relaxed and 20–15% remains in the form of strain, independent of the Co layer thickness in the regime studied.


Author(s):  
M. K. Lamvik ◽  
J. M. Pullman ◽  
A. V. Crewe

Negative staining and high resolution shadowing have been extensively used for structural studies in electron microscopy. However, these techniques cover the specimen with a layer of heavy salt or metal, and hence do not allow determination of true mass distribution or localization of specific sites using heavy atom markers. A prerequisite for such structural studies is an examination of unstained specimens. For thin specimens dark field microscopy must be used to obtain adequate contrast. The scanning transmission electron microscope is preferred for such studies since elastic, energyloss, and unscattered electrons can be recorded and analyzed quantitatively to form images with a minimum of beam-induced damage.


Clay Minerals ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 135-147 ◽  
Author(s):  
H. Aoudjit ◽  
M. Robert ◽  
F. Elsass ◽  
P. Curmi

Abstract: Smectite genesis in two granitic saprolites was studied, using qualitative and quantitative mineralogical methods and high resolution transmission electron microscopy (HRTEM). The primary minerals (plagioclase and mica) give rise to the formation of different kinds of smectites according to the weathering conditions (pH and drainage). Under a relatively basic, drained environment, a neoformed montmorillonite with a spheroidal organization exists in fillings of plagioclase cores. In the same conditions biotites are transformed into beidellites with a quasi-crystal organization. Under hydromorphic conditions, muscovites evolve incompletely towards smectites, whereas biotites lead to a montmorillonite with a tactoid organization.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. C. Nicol ◽  
M. L. Jenkins ◽  
N. Wanderka ◽  
C. Abromeit

AbstractThe stability of Cu precipitates in an Fe-1.3wt%Cu alloy under 300 keV Fe+ion irradiation has been investigated using transmission electron microscopy and high-resolution electron microscopy. The irradiations were carried out between room temperature and 550°C at displacement rates of 103 to 10−2 dpa(s)−1 to fluences of up to 30 dpa. Copper precipitates were found to keep their shape but decrease in size under all irradiation conditions. The results are discussed within the framework of a competitive process between irradiation induced ballistic destruction of precipitates by cascades and irradiation-enhanced precipitation.


1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


Sign in / Sign up

Export Citation Format

Share Document